1.

SAND94-1100 Distribution
Unlimited Release Category UC-705
| Printed October 6, 1995 7:49 am

CUBIT Mesh Generation

Environment

Volume 1: Users Manual

Cubit Development Team?

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

The CUBIT mesh generation environment is a two- and three-dimensional fi-
nite element mesh generation tool which is being developed to pursue the goal
of robust and unattended mesh generation—effectively automating the genera-
tion of quadrilateral and hexahedral elements. It is a solid-modeler based pre-
processor that meshes volume and surface solid models for finite element
analysis. A combination of techniques including paving, mapping, sweeping,
and various other algorithms being developed are available for discretizing the
geometry into a finite element mesh. CUBIT also features boundary layer
meshing specifically designed for fluid flow problems. Boundary conditions
can be applied to the mesh through the geometry and appropriate files for anal-
ysis generated. CUBIT is specifically designed to reduce the time required to
create all-quadrilateral and all-hexahedral meshes. This manual is designed to
serve as a reference and guide to creating finite element models in the CUBIT
environment.

This manual documents CUBIT Version 1.11.0.

See the next page for the members of the CUBIT Development Team.

Exceptional Service

v Cubit Development Team Membership

Sandia National Laboratories, Albuquerque New Mexico

James R. Hipp Computational Mechanics & Visualization

Randy R. Lober Advanced Engineering & Manufacturing Software
Scott A. Mitchell Applied & Numerical Mathematics

Gregory D. Sjaardema Solid & Structural Mechanics

Marilyn K. Smith Technology Programs

Timothy J. Tautges Computational Mechanics & Visualization
Tammy J. Wilson Technology Programs

Los Alamos National Laboratories, Los Alamos, New Mexico

William R. Oakes Technology Modeling and Analysis Group

Brigham Young University, Salt Lake City, Utah

Steve Benzley Civil Engineering Department
Steve Owen

Mark Whitely

David White

Consultants

Malcolm Panthaki Consultant, Albuquerque, New Mexico

Table of Contents

v Table of Contents

Vv Cubit Development Team

Membership i

v Table of CONteNntS
VLISt Of FIQUIeS . ..
W List of Tableso e

Chapter 1: Getting Started . . .

¥ How to Use This Manual
v CUBIT Mailing List

v Problem Reports and Enhancement Requests

v Executing CUBIT
Execution Command

SYyNtaX. . .o

Initialization File.
User Environment Settings.
Graphics Customization i
vV .Command SYNtaXt
VW FatUIeS . .
Geometry Creation e
Algebraic Command Preprocessing«

Geometry Consolidati

O . . e e e

Geometry Decomposition.
Supported Element Types.
Mesh Creation. e
Boundary Condition Application

Graphical Display Capabilities

Hardware Platforms
¥ Future Releases

Chapter 2: Tutorial

VY The Tutorial e e e e e e

v Step 1: Beginning Executi
v Step 2: Creating the Brick
v Step 3: Creating the Cylin

L0

der e

v Step 4: Adjusting the Graphics Display

v Step 5: Forming the Hole

Vv Step 6: Setting Body Interval Size
Vv Step 7: Setting Specific Surface Intervals
v Step 8: Setting Specific Curve Intervals

v Step 9: Surface Meshing
v Step 10: Volume Meshing
v Congratulations!

Document Version 4/18/96

CUBIT Reference Manual

5

13
15

17

17
18
18
19
19
21
21
21
22
24
24
24
24
25
25
25
25
26
26
26

27

27
29
29
31
31
32
33
33
34
35
35
37

Table of Contents

Chapter 3: Environment e 39
vinterface ChoiCeS 39
OV VI W, . o o 39
Command Line VErSIONttt et 39
Batch Interface 41
V¥ Session CoNntrol 41
General Execution Commands 41
vJdournal Files 42
CUBIT Journal File Generationt 42
Replaying Journal Files. 43
Y GraphiCs . ..o 44
Graphics Window Control 44
Image Rendering Control 45
Viewing the Model a7
Displaying Entities 50
Drawing Entities 50
Highlighting Entities 51
Setting Visibility 51
Global Settings 52
Individual Geometric Entity Settings 53
C0lOr . . 53
Entity Labeling 53
Hardcopy OUIPUL. e e 55
Video ANIMationS.o 55
Vv Model Information 56
Model Summary Information. 56
Geometry Information 57
Mesh Information 58
Special Entity Information 60
Other Information. 61
Message Output Settings 62
Graphical Display Information 63
Memory Usage Information 63
VO PICKING o 64
V Help Facility 65
Chapter 4: Geometry e 67
v Geometry Definition 67
Geometric Topology oo 67
Vertex 67
Curve 67
Surface 68
Volume 68
6 CUBIT Reference Manual Document Version 4/18/96

Body 68
Group 68

Cellular Topology.
v Geometry Creation
Geometry Primitives.

Brick 70
Cylinder 71
Prism 72
Frustum 73
Pyramid 73
Sphere 74
Torus 74

Sketchpad Geometry.

Sketch Overview 76
Polygonal Outline 76
Outline Refinement 77

Importing Geometry

Importing ACIS Files 77
ACIS Test Harness 77
PRO/Engineer 77
FASTQ 78

v Geometry Manipulation
Transform Operations.

Copy 78
Move 79
Scale 80
Rotate 80
Reflect 81
Restore 81

Boolean Operations.

Intersect 82
Subtract 82
Unite 83

v Geometry Decomposition
WebCutting

Body-Based Decomposition

v Geometry Consolidation
General Geometry Consolidation
Selective Geometry Consolidation

v Geometry Attributes L.
Entity Names.

Chapter 5: Mesh Generation

v Mesh Definition

Document Version 4/18/96

Table of Contents

......................... 68
......................... 69
......................... 70

.......................... 75

......................... 77

........................ 78
......................... 78

.......................... 82

......................... 84
......................... 84
......................... 85
........................ 85

................................. 86

................................ 87
........................ 88

.......................... 88

..................... 89

......................... 89

CUBIT Reference Manual 7

8

Table of Contents

Mesh Hierarchy
Node 89
Edge 89
Face 90
Brick 90
Mesh Generation
¥ Mesh Attributes e
Meshing Schemes. e
Interval Specification
Element Types
V¥ Surface VerteX TYPeS . ..ot e
v Automated Interval Assignment
Scheme Map Interval Assignment Constraints.
Scheme Submap Interval Assignment Constraints
YV Curve Meshing e
Node Density e
Relative Element Edge Lengths
Sizing Function-Based Node Placement
Meshing the Curve
v Surface Meshing
Scheme Designation
Mapping 99
Paving 99
Submapping 100
Meshing Primitives 100
Triangle Primitive.
Adaptive Surface Meshing
Boundary Layer Tool
Meshing the Surface
v Volume Meshing
Scheme Designation
Mapping 108
Sweeping (Project, Translate, and Rotate) 110
PrOJEeCt. . .
Translate
RoOtate e
Plastering 113
Whisker Weaving 113
Meshing the Volume
v Mesh Duplication
VMesh Editingo
SMOOtNING. . . .
Surface 115
Volume 116
Accessing Smooth Functions in the GUI 116
Node Repositioning

CUBIT Reference Manual

Document Version 4/18/96

Table of Contents

Mesh Deletion. 117
Face Deletion 118
Import Mesh 119
VY Mesh Quality e 119
Background. 119
Command SYNtaxot 120
Command Examples. 121
Example OUtput 121
Limitations and Planned Enhancements: 121
Chapter 6: Finite Element Model Definition and Output 123
v Finite Element Model Definition 123
ElementBlocks. 123
NOOBSELS .« . vt 124
SIdESEtS . . . 124
v Element Block Specification 124
Default Element Types, Block IDs, and Attributes 125
Element Block Definition Examples 125
Multiple Element Blocks 125
Surface Mesh Only 125
Two-Dimensional Mesh 125
v Boundary Conditions—Nodesets and Sidesets 126
Nodeset Associativity Data. i 126
v Settingthe Title 127
v Exporting the Finite ElementModel 127
Appendix A: Command Index 129
YV Command SYNtaXt 129
¥ COMMaANAS . ..ottt e 129
Appendix B: Examples e 147
Vv General COmMMENtS 147
v Simple Internal Geometry Generation 148
Vv Octant of Sphere 149
Y AIOIl .. 151
VY The BoXx Beam 152
v Thunderbird 3D Shell 155
v Assembly COMPONENES it 158
Appendix C: Fsqacs: A FASTQ to ACIS Command Interpreter 163

Document Version 4/18/96 CUBIT Reference Manual 9

Table of Contents

W DESCIIPtON . .. 163
V¥ Program EXeCUtion 163
Y LIMItAtioONS . . . o 164
Appendix D: CUBIT Installation 165
W LICENSING ..ot 165
v Distribution Contents e 166
vnstallation e 166
v HyperHelp Installation 166
System RequUIremMeNts 167
CPU. 167
Disk Space 167
PriNter . . 167
Operating System 167
Windowing Environment 168
Copying HyperHelp Files. 168
Setting Up the HyperHelp Environment. 168
Appendix E: Available Colors 171
Appendix F: CUBIT Application Defaults File 175
Appendix G: HyperHelp Viewer 177
Vv Starting the Viewer 177
v Using Menus and BULtONS oottt e 177
Using HyperHelp Menus e 177
Using HyperHelp Buttons. e 178
Using the Keyboard with HyperHelp 178
Menus 178

10

Buttons 179
Scrolling Help Window 179

v Searching for Specific Information 179
To Access Help Topics fromthe Contents List 179
To SearchforaKeyword i 180
TOFINd ANy TeXt . ..o e 180

v Navigating Through Help e 181
To Display a Pop-up Definition 181
ToJumptoaNew TOPIC.ottt 181
To Browse Through a Seriesof Topics 182
To DefineaBookmark 182
ToGoToaBookmark TOpICo e 182

CUBIT Reference Manual Document Version 4/18/96

Table of Contents

To Delete aBookmark 182
¥ Making NOtes 0N TOPICS . . . oottt 183
To Create an Annotation. 183
To View an ANnotation.ttt e 183
To Delete an Annotation.t e 183
V Printing Help TOPICS 184
To Printthe CurrentHelp TopiC. i e 184
ToPrint AllHelp TOPICS.o e 184
To Print Selected Help TOPICSo oot 184
To Configure a Printer 184
ReferenNCeS 187
GloSSarY. . . o e 189
INdEX .. 193
Appendix H: ERRATA —May 26,1994 211
Chapter L. 211
Chapter 2. . . 211
Chapter 3. . . 211
Chapter 5. 211
Appendix A (Command Index) 211
APPENdIX F .o 212

Document Version 4/18/96 CUBIT Reference Manual 11

Table of Contents

12 CUBIT Reference Manual Document Version 4/18/96

v List of Figures

Figure 2-1 Geometry for Cube with Cylindrical Hole................oooiiiiiiii 38
Figure 2-2 Generated Mesh for Cube with Cylindrical Holecoviiiiiiiiiiiee, P8
Figure 3-1 Main GUI Window Showing File MeNnu ... i (1
Figure 3-2 Journal Record/Play Dialog BOXccooiiiiiiiiiiiiiiiiiiiieeieeeeeee e 12
Figure 3-3 File Selection Dialog BOX.........cccouiiiiiiiiiieiiiiiis e 3
Figure 3-4 Graphics Mode Dialog BOXccccuuuiiiiiiiiiiiiiieiiee e 5
Figure 3-5 Schematic of From, At, Up, and Perspective Angle.........ccoovveiivviiiiiiinnnnnnnn. A7
Figure 3-6 The Graphics View Dialog BOX..........uuuuiiiiiiiiiiiieeeeeeeeeeeeeecrse e 18
Figure 3-7 Graphics Draw Dialog BOX..........uuuuuuiiiiiiiiiiieieeeeeee e 51
Figure 3-8 Visibility DIalog BOX........cceuuuuiiiiiiiiiiiiie e e ettt s e e e e e e e e e e e e e eeeeennnenes 92
Figure 3-9 (©70] (o] g D 1F=1 (0 I =0) PP b4
Figure 3-10 Hardcopy Output DIi@log BOXcueeiiiiiiiiiiiiieieiaieeiis e b5
Figure 4-1 Cellular Topology Between VOIUMES............cuvviiviiiiiieiieeeeeeeeeeeeeeee 59
Figure 4-2 Dangling Faces & EAQeS......coo v 69
Figure 4-3 CUBIT Ge0omMEetry PrimitIVESuuuiiiiiiiiiiiiiiieieiee e e 70
Figure 4-4 Brick Creation Dialog BOXccvvviiiiiiiiiiiiii e e e e e e e e e fi
Figure 4-5 Cylinder Creation Dialog BOXccoovuiiiiiiiiiiiiiieee et 72
Figure 4-6 Prism Creation Dialog BOX..........ccooiiiiiiiiiiiiiiiiicieceee e 72
Figure 4-7 Frustum Creation Dialog BOX.......cociiiiiiieeeiiiiiiieieiiiiicis e e e e e e e e e 73
Figure 4-8 Pyramid Creation Dialog BOX..........ccouiiiiiiiiiiiiiiiiiie et 74
Figure 4-9 Sphere Creation Dialog BOXcooiiiiiiiiiiiiiiiiieeeeeeeee e 75
Figure 4-10 Torus Creation Dialog BOX..........uiiiiiiiiiiiiiiiiiieeeeeeicies e e e e e e 75
Figure 4-11 Sketch Creation Dialog BOXcooeiiiiiiiiiiiiiiiiee e 76
Figure 4-12 Body COPY Dialog BOX......uuuuiiiiiiiiiiiiiiiiiiiieee e 79
Figure 4-13 Body MOVE Dialog BOX........cuvuuuiiiiiiiiiii e e e e e e e e e e e eeeannannnns 80
Figure 4-14 Body Scale Dialog BOX.......cuuuiiiiiiiiiiiiiiiieiiiiii ettt 80
Figure 4-15 Body Rotate Dialog BOX.........cccoiiiiiiiiiiiiiiiiiiieieeeee e 81
Figure 4-16 Body Reflect Dialog BOX...........coiiiiiiiiiiiiiiei e 81
Figure 4-17 Intersect Boolean Dialog BOX..........ccooiiiiiiiiiiiiiiiiiiiiieie et 82
Figure 4-18 Subtract Boolean Dialog BOXeuuuuiiiiiiiiiiieieeeeeeeeeeeeeeeevse e e e e 83
Figure 4-19 Web Cutting DialOgoiiiiiiiiiiii e eaeens 84
Figure 4-20 Solid Model Prior to DeCOMPOSITIONcccciiiiiiiiiiiiiiiieee e 86
Figure 4-21 Solid Model After DECOMPOSILION.......cciieiieieeeeee i e e e e e e e eeeeaeens 86
Figure 4-22 Geometry Consolidation Dialog BOX........ccooeviiiiiiiiiiiiiiiiiii e 87
Figure 5-1 Local Node Numbering for CUBIT Element TypesS........ccccccuvviiiiiirieieeenennenn. 92
Figure 5-2 [lustration Of ANGIE TYPESvuireeiiieie et e e e e e e e e e eeeeaeenns 93
Figure 5-3 Scheme Map Logical Properties.........ccoiioiiiiiiiiiieeeie e 94
Figure 5-4 Scheme Submap Logical PrOPErtiesuuuuieiiiiiiiiiiiiieeeeeeee e 95
Figure 5-5 Curve Meshing With The GUI Mesh Dialog BOX...........cccuvvviviiiiiiiiiiieeeeeenn, 96
Figure 5-6 Equal and biased curve Mmeshing.........ccooooiiiiiiiiiiiiiiiiieee s 98
Figure 5-7 Surface Meshing with the GUI Mesh Dialogccccciiiiiiiiiiiiiiiiiiieeeeeeeen 99

Document Version 4/18/96

CUBIT Version 1.11.0 Reference Manuall3

List of Figures

Figure 5-8

Figure 5-9

Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 5-22

Figure 5-23
Figure 5-24
Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29
Figure 5-30
Figure 6-1

Mapped and paved surface Meshingccccccuiiiiiiiiiiiiie s 100
Submapping EXAmMPIEcooriieiicie e 101
Alternate Submapping Topology Interpretation............ccccceeeeiiieneeeeiiiieeeiiinnns 101
Triangle primitive MESNuuiiiiii e 102
Curvature sizing function meshes on cylinders with varying radii................ 102
lllustration of No Sizing, Linear, Interval, and Inverse Sizing Functions..... 102
Test Sizing fUNCLION MESN. ... 103
PIAStIC STrain MELIIC.......oii it e e e as 104
Adaptively generated MEeSh...........uuuiiiiiiiiiiiiii e 105
Boundary Layer Parameters. oot s s e e e e e e e e e e eeeeenanannnnes 105
Boundary Layer Dialog BOX.........uuiiiiiiiiiiiiiicceceiee e 106
Volume Meshing with the GUI Mesh Dialog.............coooiiiiiiiiiiiiiiiiieeeeeeeen 108
Volume Mapping of an 8-Surfaced VOIUME.........ccccevveviiiiiiiiiiieee, 109
Volume Mapping of a 5-Surfaced Volume..............coovviiiiiiiiiiii e, 109
Surface Mesh of an 8-Surfaced Volume Highlighting the Logical Edges Used For
VOIUME MAPPING. ceieeeeeeeiiititiis e e e et e e e e e e e ettt a s e e e e e e aeaeeeaeeeeeaesaassaa i aaaeeeaaaaeaaeeeeees 110

Project Volume MeShiNgcoooiiiiiiiiiiie e e 111
Multiple Surface Project Volume MeShingccccovviieiiiiiiiiiiiiiiiii 112
Plastering EXAMPIES......ccoiii i 113
Whisker Weaving MESNES.uuuuiiiiii e 114
Smooth Surface and Smooth Volume Dialog BOXES...........uvviiiiiiiiiiiiiineenennn. 117
Mesh Delete and Mesh Delete Warning Dialog BOXEScccceeveeiieeeeeennn. 118
lllustration of Quadrilateral Shape Parameters (Quality Metrics).................. 120
lllustration of Quality Metric Graphical OUIPUL............ccevviiiiiiiiiiiiiiiieeeeee, 122
Printer SEtUP DIalOg.....ccoooeei e 185
Printer OptioNS DiIAl0Quuuuriiiiiiiiiiieiii e 186

Figure 6-2

14 CUBIT Reference Manual

Document Version 4/18/96

v List of Tables

Table 3-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 5-1
Table 5-2
Table 5-1
Table 5-1
Table 5-1
Table B-1
Table D-1
Table 6-1

Document Version 4/18/96

Command Line Interface Line Editing KEYSccccvviiiiiiiiiiiiiiiieieeeees
CUBIT Journal file used for List Output Examplescccccceeviiiiiiiiiinnnnns
Sample Output from ‘List Model’ Command ...,
Sample Output from ‘List Names’ Commandcccoovviviiiiiiiiiiiiiiiieeeee.
Sample Output from ‘List Group’ Commandcooevvviiiviiiiiiieieeeeeeee,
Sample Output from ‘List Body’ Commandccooiiciiiiiiiiiiiiiiieeeeeeeee.
Sample Output from ‘List Volume’ Commandcccoeeeiiiiiiiiiiiiiiiiieeee.
Sample Output from ‘List Surface’ Commandccccceeeiiiiiiiniieeeeeeeee,
Sample Output from ‘List Curve’ Commandcccccvvviiiiiiiiieiiiieeeeeeeeeenn
Sample Output from ‘List Vertex’ Commandccuvvveiiiiiiinieeeeeeeneeene,
Sample Output from ‘List Hex’ Commandcoovviiiiiiiiiiiiiiceeeeeiieee,
Sample Output from ‘List Face’ Commandccoooiiiiiiiiiiiiiiiiiieeeeeeeeeeen
Sample Output from ‘List Edge’ Commandcoevvrriviiiiiiiiiiieeeeeeeeeeeen,
Sample Output from ‘List Node’ Commandccoovvviiiieiiiiiiiiiieeeeeeeiinn,
Sample Output from ‘List Block’ Commandcccccceeeiiiiiiiiiiiiiiiiiienee,
Sample Output from ‘List SideSet’ Commandccoeevvvviviiiiiiiiiiienennn.
Sample Output from ‘List NodeSet’ Commandccccceeeeeeiviiiiiiieeeeeennnnnn,
Sample Output from ‘List Settings’ Commandcooevvviiiiiiiiiiiiieeeeeeeenn.
Sample Output from ‘List View’ Commandcccceeeeiiiiiiiieeeiiiiiiiceennn
Sample Output from ‘List Memory’ Commandooeuvveiiiiiiiinneneeeneeeen.
Default Meshing AttriDULESuuuiiiiiiiii e
Valid Meshing Schemes for Curves, Surfaces, and Volumes
Listing Of 10QICal SIAESuiiieiiieee e
Sample Output for ‘Quality’ Commandccccccviiiiiiiiiiini
Element Quality PIOt LEGENdoovvviiiiiiiiiee e
CUBIT Features Exercised by EXamples.cccccoiiiiiiiiiiiie
HyperHelp Distribution Files ...
AVAIIADIE COlOIS ..t

CUBIT Version 1.11.0 Reference Manuall5

Chapter 1: Getting Started '

v How to Use This Manual...17

v CUBIT Mailing List...18

v Problem Reports and Enhancement Requests...18
v Executing CUBIT...19

v Command Syntax...22

v Features...24

v Future Releases...26

Welcome to CUBIT, the Sandia National Laboratory automated mesh
generation environment. With CUBIT the geometry of a part can be importeg,
created, and/or modified using an embedded solid modelling engine. The
geometry can then be discretized into a finite element mesh using a combination
of techniques including paving [1], mapping, sweeping, and various other
algorithms being developed. CUBIT also features boundary layer meshing
specifically designed for fluid flow problems. Boundary conditions can be
applied to the mesh through the geometry and appropriate files for analysis
generated. CUBIT is specifically designed to reduce the time required to create
all-quadrilateral and all-hexahedral meshes.

v How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is
divided into chapters which roughly follow the process in which a finite element model is
designed, from geometry creation to mesh generation to boundary condition application. An
example is provided in a tutorial chapter to illustrate some of the capabilities and uses of
CUBIT. Appendices containing complete command usages, examples, installation instructions,
and a list of available colors are included.

The CUBIT environment is designed to provide the user with powerful meshing algorithms that
require minimal input to produce a complete finite element model. As such, the code is
constantly being updated and improved. Feedback from our users indicates that new meshing
tools are often needed and/or desired before they have been completely tested and debugged. As
a service to the user, these tools are integrated and made available as quickly as possible, but in
auser bewarestate. As they are further tested (often with the assistance of users) and improved,

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuall 7

CHAPTER 1 Getting Started

'Y
Ry

the state of the particular tool becomes more stable, and thus the risk to the user is lowered.
Since documentation of the tool is necessary for actual use, we have included the documentation
of all available tools in the manual. However, to warn the user, a “hammer” icon is placed in the
document next to those features that are only minimally tested or are in a state of work-in-
progress (See “hammer” icon in left margin). In other words, “proceed with caution.” Certain
portions of this manual contain information that is vital to understand in order to run CUBIT
effectively. In order to highlight these portions, a “key” icon is positioned in the document next
to these sections. In other words, “this is a key point”.

This manual is Volume 1 of the CUBIT documentation set. The companion docur@eilis
Mesh Generation Environment, Volume 2: Developers ManuahBich contains internal
programming-related details of the CUBIT mesh generation environment.

This manual documents CUBIT Version 1.11.0, March 20, 1995.

v CUBIT Malling List

A mailing list has been created to keep interested users informed of new features, bug-fixes, and
other pertinent information about CUBIT. The list can also be used by users for general
discussions about CUBIT. Users can subscribe to the mailing list by sending a mail message to
listserv@sahp046.jal.sandia.gov with the body (not the subject) of the mail message
containing the line:

subscribe cubit Your Full Name

The user would then receive a message confirming the subscription to the CUBIT mailing list.
More information about the use of the mailing lists can be obtained by sending the message
help to the above mail address. Messages are sent to the list by sending mail to the address:

cubit@sandia.gov

The CUBIT developers will be sending announcements of new CUBIT capabilities,
enhancements, and user-visible bug fixes to this list on a regular basis. In addition, this list may
be used for general questions regarding CUBIT that may be solvable by other subscribers to the
list.

An additional mailing list has been created for direct communication with the CUBIT
developers. All messages sent to this list will be distributed to the CUBIT developers only. It
should be used for questions that are not of general interest to other CUBIT users. Messages are
sent to the CUBIT developers by sending mail to the address:

cubit-dev@sandia.gov

v Problem Reports and Enhancement
Requests

The CUBIT project is using GNATS [17], the GNU Problem Report Management System, for
tracking questions, problem reports, and enhancement requests. The GNATS system is designed
to allow users who have problems with the CUBIT code, or who have requests for new features
to be added to the CUBIT code, to submit reports of these problems or requests to the CUBIT
developers. The GNATS system provides a program csdlied-prwhich can be used to submit

18 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 1 Getting Started

problem reports and enhancement requests in a standard, defined format which can be read by
an electronically managed database which automatically notifies responsible parties of the
existence of the problem. It also provides a mechanism for keeping everyone involved in the
problem report informed of the current state of the problem.

In general, any editor and mailer can be used to submit valid Problem Reports (PR), as long as
the format required by GNATS is preserved. Howesend-prautomates the process and
ensures that certain fields necessary for automatic processing are present. Teenc@iid
strongly recommended for all initial problem-oriented correspondence with the CUBIT
developers. The user documentation for the GNATS system is supplied with the CUBIT
program. On the Sandia Internal Restricted Network, the documentation is available from
sahp046.jal.sandia.gov:/ust/local/doc/gnats.ps . On the Sandia External
Open Network, the documentation is available freass577.endo.sandia.gov:/
home/cubit/gnats.ps. Contact your CUBIT code sponsor, or if this fails, Greg
Sjaardemaddsjaar@sandia.gov) if you cannot access either of these locations or if you
have problems using the system.

an attempt by the CUBIT developers to ignore and or discourage face-to-face
discussion of problems with, or enhancements to the CUBIT code with users. The use
of GNATS is intended to help the developers manage, prioritize, and track the tasks
required to produce a usable “state-of-the-art” production mesh generation package.

& Note: The existence and recommended use of an electronic bug reporting mechanism is not

v Executing CUBIT

Execution Command Syntax

Two versions of CUBIT are currently supported: 1) a basic command line version which output
graphics to a standard X Window System graphics window, and 2) a batch command line
version with no graphics. The commands to execute these versions of CUBIT on most systems
are simply:

| cubit Command line version with X Window system graphics.

cubitb Batch command line version, no grapfics

Throughout this manual, “CUBIT” will be used as a generic term that applies to all of the
| executables. If it is necessary to specify a specific version of CUBIT, one of above names will
be used.

The command syntax recognized by CUBIT is:

{cubit|cubitb} [-help] [-initfile <val>] [-noinitfile] [-solidmodel <val>]
[-batch] [-nojournal] [-journalfile <file>] [-maxjournal <val>]
[-noecho] [-debug=<val>] [-information={on]|off}] [-warning={on|off}]
[-Include <path>] [-fastq <fastq_file>] {<input_file_list>|<var=value>}...

1. The cubitb executable may be eliminated in the future and its functionality duplicated using the ‘-batch -nographics’ command
| line options to the cubit executable.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuall9

CHAPTER 1 Getting Started

where the quantities in square bracKetptions] are optional parameters that are used to
modify the default behavior of CUBIT and the quantities in angle brasketses> are values
supplied to the option. The effect of these parameters are:

-help Print a short usage summary of the command syntax to the terminal and exit.

-initfile <val> Use the file specified byval> as the initialization file instead of the default
initialization file $HOME/.cubit .

-noinitfile Do not read any initialization file. The default behavior is to read the initialization
file SHOME/.cubit or the file specified by thénitfile option if it exists.

-solidmodel <val> Read the ACIS solid model geometry information from the file specified
by <val> prior to prompting for interactive input.

-batch Specify that there will be no interactive input in this execution of CUBIT. CUBIT will
terminate after reading the initialization file, the geometry file, and the file specified by the
initfile option.

-nojournal Do not create a journal file for this execution of CUBIT. This option performs the
same function as thiournal Off command. The default behavior is to create a journal file.

-journalfile <file> Write the journal entries to the fildile>. The file will be overwritten if
it already exists.

-maxjournal <val> Only create a maximum e&fval> default journal files. Default journal
files are of the forneubit.#.jou where # is a number in the range 01 to 99.

-noecho Do not echo commands to the console. This option performs the same function as
theEcho Off command. The default behavior is to echo commands to the console.

-debug=<val> Setthe debug message flags indicatedvay> . <val> is a comma-separated

list of integers or ranges of integers. An integer range is specified by separating the beginning
and the end of the range by a hyphen. For example, to set debug flags 1, 3, and 8 to 10 on, the
syntax would be -debug=1,3,8-10. Flags not specified are off by default. Debug messages are
typically of importance only to developers and are not normally used in hormal execution.

-information={on|off} Turn on/off the printing of information messages from CUBIT to the
console.

-warning={on|off} Turn on/off the printing of warning messages from CUBIT to the console.

-Include=<include_path> Set the patch to search for journal files and other input files to be
<include_path>. This is useful if you are executing a journal file from another directory and that
journal file includes other files that exist in that directory also.

-fastq=<fastq_file> Read the mesh and geometry definition data in the FASTQ file
<fastq_file> and interpret the data as FASTQ commands. See Reference [5] for a description
of the FASTQ file format.

The information following the last option on the command line consists of either input files or
variable definitions. Variables are specified by the syxtaxiable=value> where variable is

any valid variable name (See Reference [13]) and value is either a real value or a string value.
String values must be surrounded by double quotes. Input files are specified simply by typing
the filename. All files specified on the command line following the last option are processed in
the order they are listed prior to prompting for interactive command input.

An example of the use of the command line options is:

cubitb -batch -nojournal final_mesh.jou height=1.2345

20 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 1 Getting Started

which specifies thatubitb will execute the commands in the fileal_mesh.jou unattended.
| The variableneight will be defined to have the value 1.2345. This mode is typically used to
recreate a previously generated mesh with no user interaction.

The command options can also be specified throug@tH&T_OPT environment variable.
See the “User Environment Settings” section below for more information.

Initialization File

If the file SHOME/.cubit or the file specified by the optiondalitfile <val> option exists when
CUBIT begins executing, it is read prior to beginning interactive command input. This file is
typically used to perform initialization commands that do not change from one execution to the
next, such as turning off journal file output, setting geometric and mesh entity colors, and setting
the size of the graphics window.

User Environment Settings

To execute CUBIT several environment variables must be set. In particulaH@ME”,

“PATH” “HOOPS_PICTURE” and “DISPLAY " variables. Th&HOME environment variable

is typically set automatically when you login to a system. Its purpose is to provide a pointer to
your login directory. Th€ATH, on a Unix system, is a list of directories that are searched for
commands to be executed. Proper setting of the path is system-dependent; if CUBIT does not
execute correctly, contact your system manager or another CUBIT user for the correct setting
of thePATH specification.

The X Window System-based command line input version of CUBUDI{) requires the
specification of th®ISPLAY andHOOPS_PICTURE? environment variables which are used

by the application to determine where the graphics window should be displayed (and which
screen should be used on displays with multiple monitors). C Shell users can set the
environment variable by typing:

setenv HOOPS_PICTURE x11/my_display:0.1

This will make the Graphics Window show up on display number 0.1.

CUBIT also requires the environment variaBl@BIT_HELP_DIR if the online hypertext help
system will be used. This variable should be set to the pathname specifying where the CUBIT
help filecubitHelp.hlp is located. The person responsible for installing CUBIT on the system
should be contacted for this information.

Another useful environment variable @UBIT_OPT which can be used to set execution
command line parameter options. For example, if journalling of commands is never wanted,
then settingCUBIT_OPT to-nojournal will turn off journalling for all CUBIT executiorfs

Graphics Customization

Settings for the default CUBIT window sizes, locations, colors, and fonts can be set in the
Xdefaults or.Xresources resource files in the user's home directory. This file is a text file
that can be edited with any standard UNIX text editor. In the resource file, each resource must

J1. HOOPS_PICTURE will automatically be set to x11/$DISPLAY if it is not set by the user.
2. Journalling could then be turned back on with the “Record” command.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual1

CHAPTER 1 Getting Started

be on a separate line. The resource setting consists of a resource label, a colon, one or more
spaces or tabs, and the resource value. For additional general information on resources, see X
Window System documentation; a readily available documentation source is the RESOURCES
section of the X(1) manual page which is usually installed on most systems.

A CUBIT resource label begins with the word “cubit” followed by an asterisk or period,
followed by the specification of the resource. For example, to specify that the CUBIT graphics
window should be 700 pixels square rather than the default size, the following line should be
added to the resource file:

cubit*CUBIT.geometry: 700x700+445+0

Another file, similar to the resource file is the Application Defaults file which is used to
customize CUBIT’s graphical user interface. This file, caletBIT.ad is distributed with the
CUBIT executables. This file must be rename@tBIT and then installed in eithéusr/
lib/X11/app-defaults for system-wide defaults and/or in a user's home directory for
per-user defaults. The contents of this file are reproduced in “CUBIT Application Defaults File”
on page 175. The format of this file is the same as the resource file format.

For example:
cubit*XmTextField*background: LightBlue

This line states that the background of all text fields ircthst application will be the color
LightBlue. Colors can normally be found in thesr/lib/X11/rgb.txt file on your
system. For additional information about application default files, see the application defaults
section in any X Window user’s book.

v Command Syntax

The execution of CUBIT is controlled either by inputting commands from the command line (or

in the command line field in the main window of the Motif-based version of CUBIT [See Figure
3-1 on page 57]), or through the use of the Graphical User Interface (GUI). The Graphical User
Interface parses the user input and generates an equivalent command which is recorded in a
journal file and actually executes the action requested. Throughout this document, each function
or process will have a description of both the command required to perform the function or
process and the steps required to perform the same function through the graphical user interface.
In this section, the command syntax used in this manual will be described. Although knowledge
of the command syntax is not necessary for the use of the graphical user interface version of
CUBIT, it may be helpful to skim this section anyway since the journal file written by CUBIT
uses these commands. The user can obtain a quick guide to proper command format by issuing
the <keyword> help command. This help message will indicate the full command syntax
expected by the keywords. For example, enteriegy help results in the following output:

View At <X_coord> <Y_coord> <Z_coord>
View From <X_coord> <Y_coord> <Z_coord>
View List

View Up <X_coord> <Y_coord> <Z_coord>

The words that begin with an uppercase letter are keywords which must be entered (case is hot
significant) and the bracketed words are user supplied parameters.

22 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 1 Getting Started

The commands recognized by CUBIT are free-format and must adhere to the following syntax
rules.

« Either lowercase or uppercase letters are acceptable.

e The ‘#” character in any command line begins a comment. #harfd any characters
following it on the same line are ignored.

Each command typically has either:
» an action keyword or “verb” followed by a variable number of parameters, for example

Mesh Volume 1

* or a selector keyword or “noun” followed by a “verb” or “selector keyword and a variable
number of parameters, for example

Volume 1 Scheme Project Source 1 Target 2

The action or selector keyword is a character string matching one of the valid commands. It may
be abbreviated as long as enough characters are used to distinguish it from other commands. The
meaning and type of the parameters depend on the keyword. Valid entries for parameters are:

» A numeric parameter may be a real number or an integer. A real number may be in any legal
C or FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer parameter may be in
any legal decimal integer format (for example, 1, 100, 1000, but not 1.5, 1.0, Ox1F).

| » A string parameter is a literal character string contained within single or double quotes. For

example;Thisis a string’ .
» Afilename parameter must specify a legal flename on the system that CUBIT is running.

Environment variables and aliases may not be used in the filename specification. For
example, the C-Shell shorthand of referring to a file relative to the user’s login directory
(~jdoe/cubit/mesh.jou)is notvalid. The filename must be specified using either a relative
path (./cubit/mesh.jou), or a fully-qualified path/iome/jdoe/cubit/mesh.jou). Like a
string, it also must be contained within single quotes.

» Several commands permit a range of values. A range is one of the following forms:
—“nl” selects a single valuel,
—*“nlton2 " selects all values froml ton2. The valus2 must be greater thari,
—*"nlton2byn3 ”selects all values froml ton2 stepping by3, wheren3 may be
positive or negative.
The keywordsthrough ” and “thru ” may be used instead afo,” and “step ” may be used
instead of by .”

» Some commands require a “toggle” keyword to enable or disable a setting or option. Valid
toggle keywords aregh”, “yes”, and ‘true ” to enable the option; an@ff”, “no”, and
“false " to disable the option.

The notation conventions used in the command descriptions in this document are:

* The command will be shown in a format thuaiks like this

» A word enclosed in angle bracketpérameter>) signifies a user-specified value. The
value can be an integer, a range of integers, a real number, or a string. The valid value types
should be evident from the command or the command description.

» A series of words in braces and delimited by a verticafbhoicel | choice2 |
choice3}) signifies that one of the words within the brackets must be entered.

» A word enclosed in square brackdtspfional]) signifies an optional parameter which can
be entered to modify the default behavior of the command, but is not required.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual3

CHAPTER 1 Getting Started

24

An example of this command syntax is shown below.

{volume|surface|curve} <range> size <size>

volume 1 size 0.5 Valid

surface 1 to 10 by 3 size 0.05 Valid

volume 10 to 1 size 0.05 Invalid — negative increment

volume 10 to 1 by -1 size 0.05 Valid

surface 1 10 size 1.0 Invalid — not a valid range specification
surface 1 to 10 interval 5.0 Invalid — “interval” requires an integer

v Features

The CUBIT environment is designed to provide the user with powerful meshing algorithms that
require minimal input to produce a complete finite element model. CUBIT is based on a solid
modeler that provides it with a precise geometric representatiorpaMiggalgorithm [1] has

been extended to mesh complex three dimensional surfaces based on the solid modeler.
Volumetric meshing is provided by mapping transformations and sweeping algorithms.
Multiple user interfaces are supported as are several quadrilateral and hexahedral element types.
The following sections provide a brief overview of the CUBIT meshing toolkit.

Geometry Creation

Geometry creation is accomplished using the geometric primitives and boolean operations in
CUBIT or by reading an external solid model file into the CUBIT meshing toolkit. External
solid model files can be created from any of several environments that support thesalds

model format: a rudimentary command line system, referred to as the “test harness [4],” is
useful for building quick and straightforward models. Other more advanced environments
include the ArieS ConceptStation and PRO/Engineer via a PRO/Engineer/ACIS translator. A
specialized software translator has been designed to translate sheet solid models from
FASTQ [5] input files into an ACIS format, which can be further modified using the ACIS test
harness. The resulting ACIS models can then be imported into CUBIT and meshed.

Algebraic Command Preprocessing

Many analysts use the Aprepro [13] program to preprocess commands and journal files which
contain algebraic expressions. The Aprepro algebraic preprocessing capability has been
implemented into the CUBIT command parser. The full Aprepro functionality has been
included except for thenits , andloop commands.

Geometry Consolidation

When assembly solid models are imported into the CUBIT environment, many surface, curve,
and vertex entities will be redundant. To resolve this issue, the automated geometry
consolidation or “merge” routines will identify matching entities and make database
modifications to remove the redundancy. Geometry consolidation can also be interactive, in case
certain redundant features need to be retained to represent slide surfaces or slide lines. The

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 1 Getting Started

geometry merge capability eliminates the generation of non-contiguous elements between
adjacent surfaces and curves which would have to be removed after meshing.

Geometry Decomposition

Solid models imported into the CUBIT environment sometimes consist of combinations of
simple geometric volumes, for example a plate with a cylinder projecting out of it. These
geometries are also sometimes constructed within CUBIT. Currently these geometries must be
decomposed into topologically primitive lumps (cylinder, brick, etc) before being able to be
mesh. CUBIT contains functions which aid in the decomposition of complicated geometries
into meshable pieces.

Supported Element Types

Element types supported in CUBIT include 2 and 3 node bars and beams; 4, 8, and 9 node
guads; 4, 8, and 9 node shells; and 8, 20, and 27 node hex elements. Element types must be set
before mesh generation is initiated.

Mesh Creation

Mesh generation in CUBIT is designed to be highly automated although numerous control
mechanisms are provided to allow the user to guide the meshing process. Meshing is controlled
through scheme choice, and interval number or node density specification. Curve meshing
schemes include equally spaced and biased spaced intervals. Surface meshing schemes include
mapping transformations, paving, boundary layers, and primitives. Volume meshing schemes
include mapping transformations and mesh sweeping or projecting. Other automated volume
meshing algorithms are being added.

Boundary Condition Application

Once a suitable mesh has been generated, elements can be grouped into sets using three control
classes: element blocks, nodesets, and sidesets. Numeric flags are associated with these sets
allowing analysis codes to apply appropriate boundary conditions to the correct mesh entities.

Element blocks are used for efficient storage of a finite element model. Within an element block,
all elements are of the same type (basic geometry and number of nodes) and have the same
material definition.

Nodesets provide a means to reference a group of nodes with a single identification number
rather than by each node’s identification number. Nodesets are typically used to specify load or
boundary conditions, or to identify a set of nodes for a special processing within CUBIT. A node
may appear in multiple nodesets, but will only appear once in any single nodeset.

Sidesets provide an additional means of applying load and boundary conditions. Unlike
nodesets, sidesets group sides or faces of elements rather than simply a list of nodes. For
example, a pressure load must be associated with elements rather than nodes to apply it properly.

Nodes, element edges, and element faces can belong to multiple nodesets and sidesets. Nodesets
and sidesets can be individually displayed for visual inspection. See reference [6] for more
information.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual5

CHAPTER 1 Getting Started

Graphical Display Capabilities

CUBIT uses the Hoops graphic display environment to render images. CUBIT can display a
wireframe, hiddenline, or shaded representation of geometric and mesh entities. CUBIT can

| also generate a PostScript file of any displayed image (see “Hardcopy Output” on page 55).
Complete control over the viewport parameters and the zoom magnification provide the user
with an intuitive modeling environment.

When operating the GUI, users can perform screen picking and point-and-click zoom
operations. All of the user-defined options are represented inside option windows by colored
status buttons. This gives the user an easy to read description of the current settings. The GUI
also gives the user control over the display of the geometry and mesh.

Hardware Platforms

CUBIT is written in “standard” C++ and should execute on any Unix operating system. To date,
it has been compiled and used on Sun (both SunOS and Solaris), Hewlett-Packard (HP-UX
9.X), and Silicon Graphics workstations (IRIX 5.3).

v Future Releases

| CUBIT is currently on a 4-month major release cycle (April, August, and December). The
capabilities of CUBIT will be expanded and enhanced on a regular basis as dictated by user
needs and the developmental progress of new meshing algorithms. Areas of concentration will
include

« full-featured automatic hexahedral meshing using a combinatasieringandwhisker-
weaving
 quadrilateral and hexahedral adaptivity,

» enhanced geometric functionality such as overlapping geometry consolidation and more
robust geometry decomposition.

 improved control of the naming of geometric and mesh entities through the use of persistent
| identification numbers or attributes.

 improved internal geometry generation through the use of an interactive sketch pad.
 improved usability, robustness, and functionality.

Extension of the CUBIT environment to new platforms will also be pursued according to user
needs.

26 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Chapter 2. Tutorial '
v The Tutorial...27
v Step 1: Beginning Execution...29
v Step 2: Creating the Brick...29
v Step 3: Create the Cylinder...31
v Step 4: Adjusting the Graphics Display...32
v Step 5: Forming the Hole...32
v Step 6: Setting Body Interval Size...33
v Step 7: Setting Specific Surface Intervals...33
v Step 8: Setting Specific Curve Intervals...34

v Step 9: Surface Meshing...35
v Step 10: Volume Meshing...35

v Congratulations!...37

The purpose of this chapter is to demonstrate the capabilities of CUBIT for finite
element mesh generation as well as provide a brief tutorial on the use of the
software package. This chapter is designed to demonstrate step-by-step instructions
on generating a simple mesh on a perforated block.

v The Tutorial

The following is a sample of the basics of using CUBIT to generate and mesh a geometry. By
following this tutorial, you will become familiar with the command-line interface and with as
much of the CUBIT environment as possible without stopping for detailed explanations. All the
commands introduced in this tutorial are thoroughly documented in subsequent chapters. Here
are a few tips in following the example in the tutorial

» Focus on instructions preceded with “Step” numbers. These step you through a series of
explicit activities that describe exactly what to do to complete the task.

» Refer to screen shots and other pictures that show you what you should see on your own
display as you progress through the tutorial.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual7

CHAPTER 2 Tutorial

» An example of the command line is shown below. In this tutorial, the command that you
should type will be preceeded by the word “Command” and a colon.

Command: This is a Command Line

| The example given in this tutorial will demonstrate the use of the internal geometry generation
capability within CUBIT to generate a mesh on a perforated block. The geometry for this case
is a block with a cylindrical hole in the center. The Create, Brick, Cylinder and Subtract
commands are used to create solid model geometry with primitives and boolean operations. The
block is then meshed using paving and translation. The geometry to be generated is shown in
Figure 2-1. This figure also shows the curve and surface identification (ID) numbers of the

Figure 2-1 Geometry for Cube with Cylindrical Hole

geometry. These ID numbers are used in the command lines shown with each step. The final
meshed body is shown in Figure 2-2 and also at the end of this chapter.

Figure 2-2 Generated Mesh for Cube with Cylindrical Hole

28 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 2 Tutorial

v Step 1: Beginning Execution

» Type “cubit” to begin execution of CUBIT. If you have not yet installed CUBIT, see
instructions for doing so in the “CUBIT Installation” Appendix. A CUBIT console window
will appear which tells the user which version is being run and the most recent revision date.
(See the following screen shot for example of window). This window relays information
about the success or failure of attempted actions.

cccec L110) L110) BEBEBBEB IIIT TTTTTT
cc cc L110) L110) BB BB II TT
cc L110) L110) BB BB II TT
cc L110) L110) BEBEBBEB II TT
cc L110) L110) BB BB II TT
cc cc L110) L110) BB BB II TT

cccec Ty BEBEBBEB IIIT TT

] *** CUBIT Versionm 1.8.1 #*#**
xxk BCTS Wersion 1.5 ***
Revised 571794
AN ALL-QUADRILATERAL AND ALL-HEXAHEDRAL. HESH
GEHERATIOH PROGRAM FOR
PRE-PROCESSIHG OF FINITE ELEHEHT AHALYSES
CUOBIT is based upon ACIS software by SPATIAL TECHHOLOGY IHC.

Executing on 05/20/94 at 09:37:35

At the bottom of the CUBIT window you will be told where the commands entered in this
CUBIT session will be journalled. For example: “Commands will be journalled to
‘cubit0l.jou’.

Below that, you will be offered the command line prompt: “CUBIT>".

« Commands are entered at that prompt, followed by the “Enter” key.
* You should also see a blank graphics display window.

v Step 2: Creating the Brick

Now you may begin generating the geometry to be meshed. You will create a brick of width 10,
height 10 and depth 10. The width and depth correspond to the x and y dimensions of the object
being created. The “width” or x-dimension is screen-horizontal and the “depth” or y-dimension

is screen-vertical. The height or z-dimension is into the screen. The command to create an object
is Create, followed by the type of geometry and its dimensions. Enter the following command.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual9

CHAPTER 2 Tutorial

30

Command: Create Brick Width 10. Depth 10. Height 10.

» The cube should appear in your display window as shown below.

Brick Display

* Note that the journalled version of the command is echoed above the next command line
along with the confirmation message “brick body 1 successfully created.”

» The controller for the command line interface can tell from context when the user wants to
create an object, so the command w@rdate can be left out. The same result as above
would have been obtained by entering:

Command: Brick Width 10. Depth 10. Height 10.

 Try this after first first issuing Reset command as follows to remove all previous geometry
and previous mesh from computer memory.

Command: Reset

» The command line interpreter can also recognize shortened versions of commands if they are
unambiguous. The following command line would also have worked.

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 2 Tutorial

Command: Br Wi 10. Dep 10. Hei 10.

« If the command line parser is not able to find an unambiguous match to one of your command
words, it will give an error message and offer a list of possible matches. For clarity, this
tutorial will use unabbreviated command words.

« Ifthe brick being created is a true cube, only the width needs to be specified, so the following
command would also have worked. Try this after issuiRgset command.

Command: brick width 10

» Notice that the command line is not case-sensitivBrisk andwWidth do not need to be
capitalized.

v Step 3: Creating the Cylinder

Now you must form the cylinder which will be used to cut the hole from the brick:

Command: create cylinder height 12 radius 3

or, by leaving th€€reate command as implicitly understood:

Command: cylinder height 12 radius 3
At this point you will see both a cube and a cylinder appear in the CUBIT display window.

Brick with Cylinder Display

v Step 4: Adjusting the Graphics Display

The picture on the graphics display can now be adjusted to verify that what you expected to
happen has indeed occurred. Issue the command

Command: from345

This changes the viewpoint of the screen to a viewing location along the vector (3,4,5). The
command word-rom stands for “view from.” The display should now look like the following

figure.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua81

CHAPTER 2 Tutorial

At this point you may rotate the model to view its validity. The easiest method is to use the
mouse. TypeMouse on the command line. You should see the message: “Entering mouse-
based rotation/zooming/panning mode” and a circle should appear around the figure in the
graphics window. To rotate the figure about its y-axis, position the mouse pointer outside the
circle, hold the left mouse butoon down and move the mouse pointer around the circle. To rotate
it around the x- and z-axes, position the pointer inside the circle and hold the left button down
while moving the mouse. To exit the mouse-based mode of rotatiorg type

In the display, the wireframe picture shows the relative locations of the bodies. Turning the
image to smooth shaded (as will be described in following steps) improves the perspective.

v Step 5: Forming the Hole

Now the cylinder can be subtracted from the brick to form the hole in the block. Issue the
following commands.

Command: Subtract 2 From 1

Note: Note that both original bodies are deleted in the boolean operation and replaced with
a new body (3) which is the result of the boolean oper&idiract .

32 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 2 Tutorial

v Step 6: Setting Body Interval Size

The next step is to generate the surface mesh on one of the surfaces to be swept. The number of
increments must be set before meshing any geometry. This is done first for the entire body by
specifying a desired size interval. Recall that body number 3 is a 10 by 10 by 10 cube with a
cylindrical hole through it. We decide to specify an interval size of 1, which suggests 10
intervals on each side. Issue the following command.

Command: body 3 interval size 1.0

v Step 7: Setting Specific Surface Intervals

The cylindrical surface (the inside of the hole) must be mapped in order for the sweeping type

tools to work. Since this surface is periodic (contains no edge along the side of the cylinder) the

mapping algorithm uses the surface interval setting to determine how many elements are to be
mapped along the axis of the cylinder. The surface must first be identified. To see the surface
numbers, issue the following commands.

Command: label surface on

Command: display

» The first command turns the surface labels on, but they do not become visible until the

display command forces an update of the graphics screen. The surface labels can now be
seen.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua33

CHAPTER 2 Tutorial

» The surface labels are positioned in the center of the geometric bounding box for each
surface. From the display it is evident that the cylindrical surface is surface 10. To set the
number of intervals to 10 on this surface only, issue the following command.

Command: surface 10 interval 10

v Step 8: Setting Specific Curve Intervals

The surface interval command also propagates downward to the edges. However, in this case we
want the circumference of the cylindrical ends of the surface to have 20 intervals instead of 10.
This is accomplished by issuing a command of the Gurve m Interval n , where m is the

curve ID and n is 20. Before we can do that, we need to identify the curves. To turn off the
surface labels and turn on the curve labels, issue the following commands.

Command: label surface off
Command: label curve on

Command: display

From the graphics display shown below, it is evident that curves 15 and 16 are the correct curve
ID’s.

To set the number of intervals on these curves to 20, issue the following command.
Command: curve 15 to 16 interval 20

Notice that we specified two curves, 15 and 16, by using the command $yritat6.

34 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 2 Tutorial

v Step 9: Surface Meshing

Now all necessary intervals have been set, and the meshing can proceed. Begin by meshing the
front surface (with the hole) using the paving algorithm. This is done in two steps. First set the
scheme for that surface Rave, then issue the command Mesh. Since the surface to be

paved is number 11, issue the command:

Command: surface 11 scheme pave

With the meshing scheme specified, we proceed to mesh the surface.

Command: mesh surface 11
» The result of this meshing operation is shown below.

v Step 10: Volume Meshing

The volume mesh can now be generated. Again, the first step is to specify the type of meshing
scheme and the second step is to issue the order to mesh. The scheme trassatés,
which requires that source and target surfaces be specified. Issue the following command.

Command: volume 3 scheme translate source 11 target 12

With the scheme set, tmesh command may be given:

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManualB5

try:

3

Environment, “Image Rendering Control” and

)

Document Version 4/18/96

The final meshed body will appear in the display window

Command: mesh volume 3

CHAPTER 2 Tutorial

4 .«@r&%»f/»/&/

N \ii b
s Wi I4\\4 TN VA
N RN DR
KRGO
%N I..\/uib"”@\ﬁ\.%v >
AR
=0V

K .
W= @ AN,
FEFRRS LPIRANY
RN >

A SRS

-

LY X Y A AN
NSO SN

Y s e N AW R
N4 »‘»‘»4‘

VAV

see Chapter 3

such a&/ireframe , Hiddenline , and Smoothshade . For

and speed of the rendered image can be controlled in CUBIT by using several

The hidden line display is illustrated below. Next
The smoothshade display is also shown below.

For detailed information on these

graphics mode commands
“Viewing the Model.”

example:

The type, quality,
Command: graphics mode smoothshade

Command: graphics mode hidenline

Command: display

Command: display
CUBIT Version 1.11.0 Reference Manual

36

CHAPTER 2 Tutorial

Hiddenline Display Smoothshade Display

v Congratulations!

You have created your first CUBIT mesh. The following chapters contain more detailed
information about using CUBIT and an in-depth description of the meshing algorithms
available.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua37

CHAPTER 2 Tutorial

38 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Chapter 3. Environment '

v Interface Choices...39

v Session Control...41

v Journal Files...42

v Graphics...44

v Model Information...56
v Program Messages...81

v Help Facility...65

The CUBIT user interface is designed to fulfill multiple meshing needt
throughout the analysis process. The user interface options include a GUI basgd
environment, a traditional command line interface, and batch mode operation.
This chapter covers the interface options as well as the use of journal files,
control of the graphics, a description of ways to interrogate the model for
specific information, and an overview of the help facility.

v Interface Choices

Overview

The user interface options for CUBIT are: 1) command line, 2) batch mode, and 3) a graphical
user interface (GUI). The command line version requires the user to type commands in order to
interact with CUBIT. The GUI allows a user to interact with CUBIT by pressing buttons and
selecting menu choices, as well as entering commands using a more traditional command line.
The batch mode version is similar to the command line version except that there is no graphical
output which allows it to be run in the background. All commands are stored in a journal file
regardless of which version is used. These commands may then be replayed in the command
line, batch mode or GUI versions.

For information on the commands and options used to execute CUBIT, see “Execution
Command Syntax” on page 19.

Command Line Version

The command line interface provides the user access to all CUBIT commands via keyboard
entry. When the command line version is executed, the command p@UBPKI>) appears in

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua39

CHAPTER 3 Environment

the UNIX shell window or terminal. A graphics window pops up once a display-related
command is executed.

The CUBIT command line interface allows the execution of any command at any time. In
contrast, the GUI presents context driven hierarchical menus. The absence of a strict hierarchy
enables the command parser to recognize any command entered at the CUBIT prompt.
Commands may be abbreviated as long as they remain unique from other commands.

The command line interface provides an EMACS-style line editing input package with
command history; It allows the user to edit the current line and move through the history list
of lines previously typed. Commands replayed from a journal file are not saved in the history
list. The available editing commands are defined in Table 3-1.

Table 3-1Command Line Interface Line Editing Keys

Key? Function
A, NE Move to beginning or end of line, respectively
F, "B Move forward or backward one position in the current line.
D Delete the character under the cursor. Sends end-of-file if no characters on
the current line.
AH, DELP Delete the character to the left of the cursor.
K Delete from the current cursor position to the end of the line
P, "N Move to the previous or next line in the history buffer.
AL Redraw the current line.
AU Delete the entire line.
NL, CR° Places current input on the history list, appends a newline and returns that

line to the CUBIT program for parsing.

? Provides “instant” help. If no text has been entered prior to typing the ‘?’, a
list of all valid keywords will be echoed. If some text has been entered,
either a list of all valid keywords matching the entered text is echoed, or if
the entered text only matches a single keyword, the syntax for that keyword
will be echoed. If the *?’ is entered inside the single or double quotes of a
filename, all files (with the correct suffix) matching the entered text will be
echoed. The “correct” suffixes are .sat for solid models, .jou for journal
files, .fsq for FASTQ files, .ps for hardcopy files, and .g for mesh files.

a. The notation ~X refers to holding down the control key and then typing the letter X.
Case is not significant.

b. See the documentation for your keyboard/workstation to determine which key sends
the DEL character.

c. NL is a newline, typically J, CR is a carriage return entered the normal way you end
a line of text.

1. The command line interface package used in CUBIT is Copyright 1991 by Chris Thewalt. The following copyright notice
appears in the source code: “Permission to use, copy, modify, and distribute this software for any purpose and without fee is
hereby granted, provided that the above copyright notices appear in all copies and that both the copyright notice and this
permission notice appear in supporting documentation. This software is provided “as is” without express or implied warranty”.

40 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

Batch Interface

The CUBIT environment is available as a separate executable, typically caltigd , that
contains no graphical display capability. This implementation will operate as any other version
of CUBIT, but is intended to perform unattended mesh generation. The batch implementation
of CUBIT is invoked by enteringcubitb -batch <journal_file> * at the UNIX prompt. To

initiate unattended operation, a journal file playback must be started. The journal file should
contain theExport command to enable CUBIT to write out the model to a Genesis database
file. Any graphics commands issued during a batch run are ignored. The EMACS-style line
editing input package described in the previous section is also available in the batch version.

v Session Control

Several commands are available to control the overall CUBIT environment. Most of these
commands are available in the GUI version by selecting the appropriate menu itentslan the
menu of the Main GUI window (Figure 3-1)

» Exit. The CUBIT session can be discontinued with either of the following commands
Exit
Quit

» Reset A reset of CUBIT will clear the CUBIT database of the current geometry and mesh

model, essentially allowing the user to begin a new session without exiting CUBIT. This is
accomplished with the command

Reset.
File | Geometry Mesh Graphics Constraints Special Help
| Import F
Exzport -
Reset
Payhack
Record... d Here:
Exit
UPDATE DISPLAY | CLEAR DISPLAY | ZoOM | zoom ALL

Figure 3-1 Main GUI Window Showing File Menu

General Execution Commands

CUBIT contains a few commands which control the executable in general. To determine the
software version number, execute Weesion command which reports the version number, the
date and time this version of CUBIT was compiled, the version number of the ACIS solid

1. See “Executing CUBIT” on page 19 for more information.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua#1

CHAPTER 3 Environment

| modeler, and the version number of the HOOPS library. This information is useful when
discussing available capabilities or software problems with CUBIT developers.

Command echoing is controlled with tliget] echo {on | offf command. By default,
commands entered by the user will be echoed to the terminal. The cofsethiatiging {on

| off} file ‘filename’ can be used to additionally log all information output by CUBIT,
including the command echo, to the file specifiedilepame .

v Journal Files

Journal files are used as a means to control CUBIT from simple text files and as insurance
against lost work during execution. These files are created in various ways within CUBIT, or
can be generated by any ASCII text editor by the user. They also serve as a means of error
logging and user support. If a bug occurs and a journal file was being written, in many cases a
support person can reproduce the error by simply playing the journal file.

CUBIT Journal File Generation

The CUBIT journalling facility can record all commands entered during the current CUBIT
modeling session. By default, the journalling facility is on—if no journalling is desired, the user
may issue the commaisket] Journal Off or run CUBIT with thenojournal command line
option. Turning journalling off should be done with care, as the journal file can save model re-
creation time when errors occur during a long session.

Unless turned off, the journal file is automatically created in the current directory. Most
commands entered during the current modeling session are saved. The exceptions are
commands that require interactive inpuo{use pick, zoom cursoi), and theplay command.

The name of the journal file begins with the woecdbit ” followed by a number between 01

and 99 followed by the charactergoti ", for example cubit05.jou or cubit45.jou

The number following €ubit " will increment as more journal files are generated in that

| directory.

In addition to the default journalling, specific portions of the CUBIT session can be saved to
user assigned files. If running the GUI version, selectingdbmal Record/Play menu item
| from theSpecial menu will display the dialog box shown in Figure 3-2

User journal file stopped.

Rec. Stop FPlay CANCEL |

Figure 3-2 Journal Record/Play Dialog Box

To start recording a journal file, click tiigecord button. A File Selection dialog box will
| prompt the user for a filename. A typical file selection dialog box is shown in Figure 3-3.
Recording can also be accomplished with the command

Record '<filename>’

42 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

Filter
fscrigdsjaarfcubitm/™ jou
Directories Files
scrigdsjaaricubitm/. Al cubit.jou Al
fscrigdsjaarficubitm/.. cubitlDR.jou
fscrigdsjaarfcubitm/CVS junk..jou
fscrigdsjaarficubitm/Saving junkZ jou
octant.jou
tst.jou
Y] Y]
|5 [P = JR]
Selection
fscrigdsjaaricubitm/,
ok | Fiter | [cancel Help

Figure 3-3 File Selection Dialog Box

Once initiated, all commands issued in CUBIT are copied to this file, as well as to the default
journal files (if on). This journal file can be closed and recording to this file terminated by either
| pushing the Stop button shown in Figure 3-2, or with the command

Record Stop

The record command is particularly useful when a new finite element model is being built and
alternate meshing strategies are being experimented with. Once the geometry has been defined,
the record option can be used to record initial meshing controls and subsequent meshing
commands. The mesh can be deleted, the recording terminated, and the process repeated to test
alternate meshing strategies. To compare trial results, the user need only delete the current mesh
and replay the journal file of the trial being considered.

Replaying Journal Files

In the GUI version, selecting tiiayback menu item from th&ile menu, or clicking on the
| Play button of the dialog box shown in Figure 3-2 will display a File Selection dialog box that

allows you to select a journal file name. To replay a journal file using the command line, issue
the command

Playback '<filename>’

The file will be read and commands in the file execlRadse commands can be inserted in
the journal file to cause the command execution to pause at that point. Typing a return if running
the command line version or clicking on the continue button in the pause dialog box will

continue execution. Playback commands can be nested. Note that the filename must be enclosed
in single quotes.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua#3

CHAPTER 3 Environment

v Graphics

The graphics display window displays a graphical representation of the geometry and/or the

mesh. This display is used in either the command line version or the GUI version of CUBIT.

The quality and speed of rendering the graphics, the visibility, location and orientation of

objects in the window, and the labeling of entities can all be controlled by the user. Additionally,
| multiple windows can be generated to provide multiple views.

The geometric model can be viewed from any point and shaded before mesh generation has
occurred. The shaded representation of the part does not represent the actual surface of the
geometry, but a facetted approximation of it computed by the ‘AG8id modeler. The
wireframe representation only shows edges of the model, and can be misleading for geometry
that has no edges (i.e. a sphere).

Similar to the geometric model, the mesh model can be viewed from any angle and displayed

| in either wireframe, hiddenline, polygonfill, flatshaded, painters or smoothshaded modes. The
shaded representation of the part is generated directly from the quadrilateral faces which exist
after the meshing process.

| This section will discuss: 1) the control of the graphics window(s), 2) the control of the
rendering parameters which affect the type, quality and/or speed of rendering of the image,
3) the control of which objects to draw and the color of drawn objects, 4) the desired labeling
of objects on the image, 5) obtaining hard copy (e.g. postscript files) of the image, and 6) video
animation generation.

As a general help to this section, when running the GUI version of CUBIT, most of the graphics
controls are available under tBeaphics menu item in the main window. To update the screen,
aDisplay command must be issued.

Graphics Window Control
The graphics window is where the meshing graphics will be displayed and is the default
viewport. The following attributes of the window can be controlled:
* WindowSize The graphics window may be resized with the mouse, or with the commands
Graphics WindowSize Maximum
Graphics WindowSize <x_dimension> <y_dimension>

whereMaximum will make the graphics window as big as the screen and the
x_dimension andy_dimension are given in screen coordinates (pixels).

» Background Color. The window background color defaults to black but can be changed at
any time using the command

| Color Background <color_name>
Color Background <color_number>

wherecolor_name is one of the colors listed in Appendix E, aadbr_number is an
integer ID identifying the color. The background color can also be set usi@gapkics
menuColor dialog box as explained in section “Color” on page 53.

Multiple graphics windows can be created if desired. If multiple graphics windows are
generated, only one of the display windows is active at any point in time -- that is, user

44 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

commands which affect the graphics display only affect the currently active window. The
following user capabilities are provided:

» Create Window. Create a new window using the command
Graphics Window Create <window_id>

wherewindow _id is an integer graphics window identifier in the range 1-9 (window 0
always exists). When a window is created, it is initialized to the default graphics state.

» Delete Window Delete an existing window (note: window 0 cannot be deleted) using the
command

Graphics Window Delete <window_id>

wherewindow_id is the integer graphics window identifier of the window to be deleted.

Set Current Active Window. Select the graphics window which is to be currently active
using the command

Graphics Window Active <window_id>

where window_id is the integer graphics window identifier of the selected graphics window
(range 0-9).

Image Rendering Control

The type, quality, and speed of the rendered image can be controlled in CUBIT using several
graphics mode types and rendering options. Graphics menuMode dialog box shown in

| Figure 3-4 is used to set these options in the GUI version of CUBIT. The graphics mode type is
Graphics Mode: Wireframe Q‘Iﬁmﬂrﬂn—le
Graphics Options Fainters
Hiddenline
I~ Autocenter Polygonfill
I~ putoclear Aatshade
- Fis sSmoothshade
I” Border

Open View Dialog Box

CANCEL |

Figure 3-4 Graphics Mode Dialog Box

set by using th&raphics Mode Type option menu. The available graphics mode types are:

» Wireframe . Wireframe drawing is the quickest mode, but it also can be the most confusing if
the mesh or the geometry is very complex. No hiddenline processing is done. The command
to set this mode is

Graphics Mode Wireframe

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua#b

CHAPTER 3 Environment

» HiddenLine. This option produces an accurate hiddenline representation of the mesh or
geometry. The command to set this mode is

Graphics Mode HiddenLine

» PolygonFill. This option is similar to flat shading, but uses a slightly different algorithm. The
command to set this mode is

Graphics Mode PolygonFill

« Painters’. This option produces a shaded image where each polygon is drawn in a single
shade. The polygons are drawn in a depth-sorted order. Although a correct rendering is
produced for most images, there are cases where an incorrect image may be rendered. This
mode is usually faster than the FlatShade and SmoothShade modes. The command to set this
mode is

Graphics Mode Painters

» FlatShade This option produces images where each polygon is drawn in a single shade. The
image is slightly degraded with this option, but the speed of rendering is improved. The
command to set this mode is

Graphics Mode FlatShade

* SmoothShadeA smoothshaded image produces the highest quality picture, but at the most
expense. Colors are blended continuously over the drawn surfaces. The command to set this
mode is

Graphics Mode SmoothShade

 Dual. This mode is designed to show the dual of the mesh as generated during whisker
weaving. With this setting, the outside element edges are drawn as wireframe and the whisker
sheets are drawn in smooth shading. This allows for a nice image of the structure of the dual
of a hexahedral mesh. The command to set this mode is

Graphics Mode Dual

The Graphics menuMode dialog box shown in Figure 3-4 is also used to set the graphics
mode options. These options control details of how the image is controlled between displays,
and the type of enhancements added to the regular drawing modes. All options d€fatt to

the start of execution. The graphics mode options are chosen by pushing the appropriate radio
buttons in theGraphics Mode Options region of this window. The graphics mode options
available in CUBIT are:

» Autocenter. This option automatically centers the model in the viewport. The command to
set this option is

Graphics Autocenter {On | Off}

» Autoclear. This option automatically clears the graphics window between displays, or
updates. The command to set this option is

Graphics Autoclear {On | Off}

» Border. This option draws a border around the current viewport. The command to set this
optionis

Graphics Border {On | Off}

1. Theterminology “painters” is used since it draws the scene similar to the method used by a painter who might paint closer
objects over more distant objects.

46 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

» Axis. This option controls the display of the axis or coordinate triad. The command to set this
option is
Graphics Axis {On | Off}
| * LineWidth . This option controls the width of the lines used in the wireframe and hiddenline
displays. The command to set the line width is
Graphics LineWidth <width>

» Text Size This option controls the size of text drawn in the graphics window. The size given
in this command is the desired size relative to the default size. The command to set the text
sizeis

Graphics Text [Size] <size>

All option settings take affect at the time they are selected, it is not necessary to apply the
changes. Th8et View Parameters is a short-cut method for popping-up the Graphics View
Dialog Box described in the next section.

Two additional commands,
graphics clear
graphics center

are available from the command line to perform a one-time only clear of the graphics window
or centering of the model in the viewport. They do not affect the setting of the autoclear and
autocenter toggles.

Viewing the Model

| Figure 3-5.shows a schematic of the variables that effect the view of the object. Adjusting these

AView Up

_ = g
Perspective Angle

View From View At

Figure 3-5 Schematic of From, At, Up, and Perspective Angle

variables will effect the way the three-dimensional model is projected onto the two-dimensional
screen. These adjustments require you to update the display to see the results. To change the
view parameters in the GUI version, select\fiev menu item from th&raphics menu. The

dialog box shown in Figure 3-6 will be displayed. This dialog box will show the current values

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua#7

CHAPTER 3

48 CUBIT Version 1.11.0 Reference Manual

Environment

View At View From View Up-Vector
0.0 X 0.0 X 0.0 o
0.0 Y 0.0 Y 1.0 Y
0.0 £ 100.00 £ 0.0 £

VIEW ROTATION Pan VIEWFORT |

-+ | X |I RESET |
1y I?I_IF
Y
—_ + z
ey
Increment I
APPLY and UPDATE I Get Current Values | CAHMCEL

Figure 3-6 The Graphics View Dialog Box

for the ‘at’ point, the ‘from’ point and the up vector. The following adjustments can be made by
the user:

* View At Point. The point you are viewing or looking ‘at’ can be set using{thé andz

coordinates of theiew ‘At’ text fields. To set the looking ‘at’ point using the command line,
issue the command

[View] At <x> <y> <z>

* View From Vector. The point you are viewing ‘from’ can be set usingXh¥, andz

coordinates of theiew ‘From’ text fields. If automatic centering (see “Image Rendering
Control” on page 45) is on, the input ‘from’ vector defines a relative viewpoint away from the
‘at’ point, in the direction of the ‘from’ vector. The magnitude of the ‘from’ vector is
computed so that the picture fits nicely on the screen. When automatic centering is off, the
‘from’ vector defines an absolute viewpoint. To set the viewing ‘from’ vector using the
command line, issue the command

[View] From <x> <y> <z>

Up Vector. The up vector sets the orientation for the graphical display. In other words, along
the line which connects the ‘from’ and the ‘at’ point, the up vector specifies which direction
is displayed as up on the screen. This can be set usiigtthandZ coordinates of thep
Vector text fields in Figure 3-6 or using the command

[View] Up <x> <y> <z>

Rotate. The rotation of the view can be specified by an angle about a world axis, or about a
screen axis vector positioned at the focus point (Screen) or the camera. Additionally rotations

Document Version 4/18/96

CHAPTER 3 Environment

can be specified about any general axis by specifying start and end points to define the general
vector. Theight hand ruleis used in all rotations. To rotate about an axis using the GUI

| interface, place a rotation angle (in degrees) ifritbement text field shown in Figure 3-6.
Rotation is performed by clicking on either ther - button by the desired axiX,(Y, orZ).
The command to accomplish such a rotation is

[Rotate <angle> About [Screen | World | Camera] {X | Y | Z}
[Animation Steps <number>]

The command defaults to the Screen coordinate system (rotations about a screen axis that is
translated to the focus point). The Animation Steps option is included in this command (and
all other rotation commands) to allow the user to perform a “smooth” rotation using several
steps. This will let the picture appear to start and stop the total rosatioathly This is
particularly useful when producing a video animation sequence (“Video Animations” on
page 55) where a smooth sequence is desired. If the video system has been initialized, the
animation command will take a snapshot at each step of the rotation.

Continuous rotations about any axis can be performed by double clicking onetobithe

buttons. The view is changed in sequential steps by the rotation increment specified. The
screen is updated as fast as the picture can be processed. When the desired view is obtained
the continuous rotations can be stopped by clicking the mouse somewhere in the View dialog
box. These continuous rotations are not actually sent as commands to the parser, and as such
are not stored in the journal file. To save the final state of the viewing angle, pét the
Current Values button in Figure 3-6 followed by thpply and Update button. This will

store the viewing parameters in the journal file. Continuous rotations are not available in the
command line version.

Rotations can also be performed about the line joining the two vertices of a curve in the
model, or a line connecting two vertices in the model. This is done with the confmands

Rotate <angle> About Curve <curve>
[Animation Steps <number>]

Rotate <angle> About Vertex <vertex_1> Vertex <vertex_ 2>
[Animation Steps <number>]

» Perspective The perspective angle can be set to adjust the relative perspective distortion of
the view. A value of 0.0 will produce no distortion as if the viewing “from” location was at
infinity. A larger value will produce more distortion. Values of about 15.0 degrees are
normal. The perspective angle is set using the command

Graphics Perspective Angle <angle>

A more convenient method of adjusting the perspective is with a simple on/off toggle. This
toggles the perspective angle between 0.0 and the current setting. The command to toggle
perspective on and off is

Graphics Perspective {On | Off}

« Zooming. The image can be zoomed to provide a close-up view of portions of the image.
When using the GUI, théoom andZoom Reset buttons on the main GUI window (Figure
3-1) are used. Theoom button allows a zoom window to be defined on the screen using the
mouse. When thoom button is clicked the cursor will move to the Graphics Window and
become a cross-hair cursor. Click the left mouse button and drag the cursor over the desired
zoom area and then release the mouse button. The third mouse button will cancel a zoom if

JL1. See“Geometry Definition” on page 67 for definitions of Curve and Vertex

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua#9

CHAPTER 3

Environment

clicked before the user clicks the first mouse button.

The command line version provides similar functionality with the
[Graphics] Zoom Cursor

command. After entering the command, move the cursor to the graphics window and click
the left mouse button at both corners of the desired zoom area. The command for performing
azoomis

[Graphics] Zoom <x_min> <y_min> <x_max> <y_max>

where the values specified are in screen coordinates (between 0 & LJodimeReset
button updates the zoom limits to a size appropriate to capture all currently defined entities.
The equivalent command is

[Graphics] Zoom Reset

A simplified command line version of zoom has also been implemented that takes a single
argument. The command syntax is defined as

[Graphics] Zoom Screen <scale_factor>

where scale_factor scales the view distance. Values of scale_factor > 1.0 zoom in toward the
focus point while values of scale_factor < 1.0 zoom away out from the focus location. The
best way to think of this is to think of a magnifying glass, a 2x zoom would magnify an
object. This command is not supported in the GUI.

TheGet Current Values button in Figure 3-6 displays the current ‘at’,’ from’, and ‘up vector’

in the appropriate text fields. This is useful after doing multiple rotations. To journal a viewing
angle after doing a continuous rotate command, select this button then clisiptiyeand
Update button. The commands

List View
View List

will list the current values of the At point, From point, Up vector, and Perspective angle in the
command line version.

Displaying Entities

The entities to be drawn in the current image can be controlled to limit the amount of
information presented on the screen. There are two distinct modes of getting entities to the
screen. The first is to set the visibility of the entities desired to be on and to turn the rest off. This
visibility control establishes a “display list” of items that will be included in the image every
time it is redrawn with display command. The second method isramediate moddrawing
capability. Using a number dfaw commands, individual items can be drawn onto the current
picture. A draw command does not put the designated entities on the “display list” - it simply
draws their wire frame image over the top of the current image. This immediate mode drawing
is useful in highlighting specific nodes, faces, etc., but will not change the picture that is
displayed when the image is updated usingltiplay command. This section uses geometry
and mesh terms defined in “Geometry Definition” on page 67, “Mesh Definition” on page 89,
and “Finite Element Model Definition” on page 123. The reader may want to read those sections
prior to reading the following discussion.

Drawing Entities

50 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

The series oDraw commands allow inspection of individual geometric and mesh enti-
ties. Individual entities or ranges of entities can be displayed. The draw commands affect
the graphics system only temporarily and updating the display will show only those items
actually in the display list.

When using the GUI version, select theaw menu item from th&raphics menu to
display the dialog box show in Figure 3-7. Select an entity type to be drawn, enter an ID or
a range of IDs for that entity type, and then chigiply to draw the entities.

+ Body ~+ Face
+ Lump + Edige
o aurface -~ Hode
o Clrve + Mode3et
o Voertex o aide3et

+ Hex -+~ Elem. BIK

| e |
APPLY I CAMCEL |

Figure 3-7 Graphics Draw Dialog Box

The command line equivalent to draw selective entities is:

draw {body | curve | edge | face | hex | volume |
node | nodeset | sideset | surface | vertex | group} <id_range>

If autoclear mode is enabled, eadnaw command will clear the screen prior to updating the
display. Ifautoclear mode is disabled, the specified entities will be added to the current set of
displayed entities. An explicilear command may be issued at any time to clear the display.

Highlighting Entities

An entity can be highlighted without erasing the remainder of the displayed model using the
Highlight commands. These commands highlight the entity in the highlight color. The highlight
commands available on the command line are:

highlight {body | curve | surface | vertex | volume} <id_range>

Currently, the highlight color is defaulted to a light gray.
Setting Visibility

Visibility of the geometry and the mesh is controlled by the use of global settings as well
as through the use of individual (selective) geometric entity settings. In the GUI version,
selecting theVisibility menu item from th&raphics menu will display the Visibility

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuabl

CHAPTER 3 Environment

dialog box shown in Figure 3-7. Tk&obal/Selective Mode

GlobalfSelective Mode: selective i |
Visibility Type: Body Geometry _#
Visihility Mode: 4 0n . Off

Current Selection(s):

Clear .H.III

Get All |
Enter a selection: To I

APPLY Pick | HELP | CANCEL

can be set to eithé&lo-

Selective Mode Global Mode
Body Geometry
Body Geometry rMesh

Body Mesh Mode
Volume Vertex
Volume Geometry HodeSet
Volume Mesh SideSet

Surface

surface Geometry
Surface Mesh
Element Block
MNodeSet

SideSet

Figure 3-8 Visibility Dialog Box

bal or Selective . TheVisibility Type will change to the proper list based on the mode.
The Visibility Mode radio buttons control whether visibility is setdw or off.

e Global Settings

Choosing theGlobal Mode will change theVisibility Type
global items when using the GUI (See Figure 3-8). The following global settings can be

used to adjust the display list:

» Geometry . This sets the visibility of all geometric entities.

* Mesh. This sets all mesh entities to be set to on or off.

* Node. This sets the drawing of mesh nodes (small dots).

to include the appropriate

» Vertex . This sets the drawing of geometric vertices (small dots).

» NodeSet. This sets the drawing of all nodes (small dots) in a NodeSet to be either on or

off.

 SideSet. This sets the drawing of all element faces (or edges) in a SideSet to be either

on or off.

The command line equivalent for setting global visibility flags is:

{block | geometry | mesh | node | vertex | nodeset | sideset } visibility {on | off}

52 CUBIT Version 1.11.0 Reference Manual

Document Version 4/18/96

CHAPTER 3 Environment

e Individual Geometric Entity Settings

Two visibility flags are attached to individual geometric entities: 1) a flag indicating
whether the geometry itself is to be included in the display list (visible), and 2) a flag to
indicate if the mesh attached to the geometry is to be visible. ChoosiBeltetive

Mode will change theVisibility Type to include the appropriate selective items when
using the GUI. For each geometric entity, the visibility of the item and any owned mesh
can be set, or just the geometry visibility or the mesh visibility can be set. The visibility
for bodies, volumes and surfaces can also be set with this interface.

The command line equivalents for the selective visibility flags are:

{body | volume | surface | sheet | group} <range> visibility {on | off}
{body | volume | surface | group} <range> geometry visibility {on | off}

{body | volume | surface | group} <range> mesh visibility {on | off}

Color

The Color commands give the user customization control of the screen appearance of any
geometric entity and its owned mesh entities. The default color used for an entity is the color of
the owning entit}. For example, if the color of a curve is not specifically set, it inherits the color

of the owning surface. Mesh entity colors are determined by the owning geometry entity, unless
set specifically according to the nodeset, sideset, or mesh entity color commands. The user can
also control the color of the screen background.

The colors available at this time are listed in Appendix E. To change the color of an entity in the
GUI version select th€olor menu item from th&raphics menu. A Color dialog box will be

| displayed (see Figure 3-9) from which the geometry type of the entity to be changed can be
selected. Choose a color from the list. The color chosen will be displayed in the swatch area to
the right of the list. Pick the entities to be modified and dipfly .

The command line equivalents to change colors are:

color {body | volume | surface | nodeset | sideset | block | sheet | group}
<id_range> <color name>

color {body | volume | surface | group} <id_range> mesh <color name>
color {body | volume | surface | group} <id_range> geometry <color name>

color {node | background} <color_name>

Entity Labeling

All geometric entities can be labelled with unique (to their geometric type) labels and,
| optionally the number of mesh intervals assigned to the entity, to enable specific entity

identification. All mesh entities can also be labelled with unique (to their mesh entity type)

labels to enable specific entity identification. In addition, the names of the geometric entities can
| also be used for the label. If the The labels are turned on or off by usibgtlecommands.

|1. See“Geometric Topology” on page 67 and “Mesh Definition” on page 89 for a description of the ownership of
geometric and mesh entities.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab3

CHAPTER 3 Environment

Geometry Type: Body = I
aguamarine 2
beige

Black
blue
blueviolet

i

I~ I

Current Selection{s):

Clear All

Get All

Enter a selection: |} To I

APPLY | Pick | HELP | CcANCEL

Figure 3-9 Color Dialog Box

| The labels will be displayed on the entity’'s centroid, which is helpful in the screen picking
operations which are used in the GUI version of CUBIT. The screen picks try to locate the entity
with the closest centroid to the actual screen pick. Thus by turning entity labelling on, the user
knows exactly where to click the pointing device in order to pick a specific entity. Labels are
also useful in determining which entities were merged during a Feature Consolidation
operation.

The command line commands are:
label all {on | off}
label geometry {on | off}
label mesh {on | off}
label {body | volume | surface | curve | vertex} {on|off|name]interval|id}
Label {face | edge | hex | node} {on | off}

In addition, the size of text drawn to the graphics display, which includes entity labels, can be
adjusted with th&raphics Text Sizecommand; the command line syntax for this command is:

Graphics Text Size <size_factor>

where<size_factor> is a scaling factor relative to the default text size.

54 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

Hardcopy Output

Thehardcopy command is used to capture graphics output to a PostScript or PICT file. Color
or monochrome PostScript and encapsulated PostScript files are available.

In the GUI version, selecting thtardcopy menu item from th&raphics menu displays the
dialog box shown in Figure 3-10. This dialog box is used to define PostScript capture options.
Input a filename to be used for the PostScript capture in the filename text field. Select a radio
button to define either encapsulated PostS¢ERS) or normalPostScript and aradio

button to define eithaZolor or Monochrome PostScript Click thé\pply button to capture

the current display o€ancel to abort the output. Only one display can be written to a file at
the current time. A new filename must be specified for each display or the file will be
overwritten. The output defaults to non-encapsulated color PostScript.

The command line equivalent is:
hardcopy '<filename>’ [encapsulated|postscript|eps] [colorlmonochrome]
Hardcopy ‘<filename>' pict [xsize <xpixels>] [ysize <ypixels>]

where xsize and ysize specify the pixel size of the created PICT image.

Filename:

-~ EPS “* PostScrpt # Color + Monochrome

APPLY I CANCEL |

Figure 3-10 Hardcopy Output Dialog Box

Video Animations

Several commands are available for generating a video recording of the graphics on the screen.

The actual video initialization and recording has been set to work with the system in the

graphics lab of the computational mechanics department. To initialize the video system, the
6 commands

Video Initialize [Frames <frames>]
Video Initialize ‘<base_filename>’ pict [xsize <xsize>] [ysize <ysize>]

are used. The first command will set up the recording devices, move the recorder to the first
available frame, and set the system ready to record the picture displayed on the workstation
screen next to the video recording equipment. The disk will be initialized to the specified
number of frames or 2000 if not specified. It has been found that resizing the window with the
following commands positions the graphics display in the proper position for optimal recording:

Graphics WindowSize Maximum
Graphics WindowSize 1170 820

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuabb

CHAPTER 3 Environment

The second command is used to create a separate PICT file of each frame. These PICT files can
then be converted into a QuickTime or MPEG animation file using external software. The
base_filename will have the frame number appended to the end to specify the sequence. The
default PICT size is 640 pixels horizontal by 480 pixels vertical.

The video animation can now be generated by taking sequential snapshots of the screen. Each
shapshot is captured by issuing the command:

Video Snap

Many of the meshing algorithms have been imbedded with flags that allow incremental snaps
during the meshing process. These flags are activated by the initialization of the video device.
This allows the generation of video animations of the meshing process rather easily. Often it is
useful during an animation sequence to spin the picture around for the viewer to see the
geometry and/or the mesh. These spins will appear choppy on the resulting video unless the
object starts and stops rotatismoothly The animated rotations described in the rotation
section on page 48 is designed to provideghisothrotation effect. These commands are also
useful for showing the model to others during demonstrations. For video animations, 30 to 60
steps are needed when making a full revolution. If the video system has been initialized, the
animation command will take a snapshot at each step of the rotation.

v Model Information

Information about the current CUBIT model can be obtained througlisheommands. There

are five general areas for which this information can be obtained: Model Summary, Geometry,
Mesh, Special Entities, and Other. These are described in detail below. The descriptions will
include sample output for some of the commands. To provide a frame of reference, the output
will be for a 1x2x3 cube meshed with an average element size of 0.1 specified for the body. The
journal file used to create the model is shown in Table 3-1.

Table 3-1 CUBIT Journal file used for List Output Examples

brickx1y2z3

body 1 size 0.1

mesh volume 1

block 1 volume 1

nodeset 1 surface 1

sideset 1 surface 2

group “Surfaces” add surface 1 to 6

Model Summary Information

A brief summary of the current state of the model can be obtained from the list totals or list
model command. The same information results from either command and provides information
on the number of each type of geometric, mesh, and special entity in the current model. A
sample output is shown in Table 3-2.

56 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

Table 3-2Sample Output from ‘List Model’ Command

CUBIT> list model

Model Entity totals:
Geometric Entities:

Total groups: 1
Total bodies: 1
Total volumes: 1
Total surfaces: 6
Total curves: 12
Total vertices: 8

Mesh Entities:

Total Hex elements: 6000
Total mesh faces: 7876

Total mesh edges: 9854
Total mesh nodes: 7161

Special Entities:

Total Element Blocks: 1
Total SideSets: 1
Total Nodesets: 1
Total BoundaryLayers: 0

Geometry Information

The commands related to listing information about the geometry of the model are
list names [group|body|volume|surface|curve|vertex|all]

list {group | body | volume | surface | curve | vertex} <id_range>
[geometry] [debug]

The first command will list names currently used in the model and their corresponding entity
type and id. If the all identifier is specified, all names in the model will be listed; if one of the
other identifiers is entered, only names for that specific entity type will be output. Sample output
from the list names surface command is shown in Table 3-3. This output shows that, for
example, Surface 2 has the two nangegkSurface ' and ‘Surface2 '’

Other information that can be determined from this output is that there are six surfaces in the
model and the IDs of these surfaces range from 1 to 6. For larger models in which several
geometry decomposition operations have performed, this information is sometimes very useful
for determining the entities and their ids that are in the current model.

The second geometry-related information command provides more detailed information for
each of the specific entities. This information will include the name and id of the entity, its
meshed status, the number of owned mesh entities (if it is meshed), the settings for various
meshing-related parameters (scheme, smooth scheme, size, and number of intervals), and a
summary of the next lower-dimension geometry entities that make up this entity. The optional
geometry identifier will additionally list the geometric bounding box for the entity. The
optionaldebug identifier provides additional solid model information that is typically only of
interest to developers of the geometry-related code. Table 3-4 through Table 3-9 show sample
output for each of the group, body, volume, surface, curve, and vertex listing options.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab7

CHAPTER 3 Environment

| Table 3-3Sample Output from ‘List Names’ Command
CUBIT> list name surf
Name Entity Id
BackSurface Surface 2
BottomSurface Surface 3
FrontSurface Surface 1
LeftSurface Surface 4
RightSurface Surface 6
Surfacel Surface 1
Surface2 Surface 2
Surface3 Surface 3
Surface4 Surface 4
Surfaceb Surface 5
Surface6 Surface 6
TopSurface Surface 5
| Table 3-4Sample Output from ‘List Group’ Command

Group Entity ‘Surfaces’ (Id = 1)
Owned Entities:
Name Entity Scheme/Meshed Int Int Size
FrontSurface Surface 1 map/Y 1 0.100000
BackSurface Surface 2 map/Y 1 0.100000

BottomSurface Surface 3 map/Y 1 0.100000
LeftSurface Surface 4 map/Y 1 0.100000
TopSurface Surface 5 map/Y 1 0.100000
RightSurface Surface 6 map/Y 1 0.100000
| Table 3-5Sample Output from ‘List Body’ Command

CUBIT> list body 1
Body Entity ‘Body1’ (Id = 1)
Owned Volumes:
Name Id: Meshed: Use Count:
Volumel 1 Yes 1

Mesh Information

list { hex | face | edge | node } <id_range>

The command related to listing information about the model mesh is:

The output from this command provides detailed information about the specified entities. This
information will include the id of the entity, its owning geometry entity, and other entity-specific
information. The hex output will indicate the Exodu$, Ithe volume which owns the hex
element, and the eight corner nodes (in standard Exodus order). The face output lists the volume
or surface which owns the mesh face, its four corner nodes, and a list of hexes that possibly share
this face. The edge output lists the volume, surface, or curve which owns the mesh edge, its two

1. Theid of the hex when written to the Exodus database, not the CUBIT id. The default value is -1 before writing the

Exodus database.

58 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

Table 3-6Sample Output from ‘List Volume’ Command

Meshed:

CUBIT> list volume 1
Volume Entity ‘Volumel’ (Id = 1)

Mesh Scheme: map
Smooth Scheme: equipotential

Interval Count: 1
Interval Size: 0.100000

Yes

Block Id: 1
Owned Surfaces: Mesh Scheme/ Interval:

Name Id Meshed Smooth Scheme # Size
Surfacel 1 map/Y equipotential 1 0.100000
Surface2 2 map/Y equipotential 1 0.100000
Surface3 3 map/Y equipotential 1 0.100000
Surface4 4 map/Y equipotential 1 0.100000
Surface5 5 map/Y equipotential 1 0.100000
Surface6 6 map/Y equipotential 1 0.100000

Table 3-7Sample Output from ‘List Surface’ Command

Block Id:

Name

CUBIT> list surf 1
Surface Entity ‘FrontSurface’ (Id = 1)

Meshed: Yes
Total element faces: 200
Total nodes (all inclusive): 231

Mesh Scheme: map
Smooth Scheme: equipotential

Interval Count: 1
Interval Size: 0.100000

Total number of curves: 4

0

Curvel
Curve2
Curve3
Curved

Scheme/ Interval: Vertices:
Id Meshed Length Number Size Factor Start, End
1 equallY 2 20H 0.1 Yy 2y
2 equallY 1 10H 0.1 2IY 3IY
3 equallY 2 20H 0.1 3IY 4lY
4 equallY 1 10H 0.1 ary 1y

end nodes, the length of the edge, and a list of faces that possibly share this edge. The node
output lists the coordinates and the volume, surface, curve, or vertex that owns the node.

Table 3-10 through Table 3-13 show sample output for each of the hex, face, edge, and node
options.

and

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab9

CHAPTER 3 Environment

| Table 3-8Sample Output from ‘List Curve’ Command
CUBIT> list curve 1to 12 by 2
Scheme/ Interval: Vertices:
Name Id Meshed Length Number Size Factor Start, End
Curvel 1 equallY 2 20H 01 Yy 2IY
Curve3 3equallY 2 20H 0.1 3y 4lY
Curve5 5 equallY 2 20H 0.1 5/Y 6lY
Curve? 7 equallY 2 20H 0.1 7Y 8lY
Curve9 9 equallY 3 30H 01 Y 7Y
Curvell 11 equallY 3 30H 01 3y 8lY
| Table 3-9Sample Output from ‘List Vertex’ Command

CUBIT> list vertex 1 to 8
Name Id Meshed X-coord Y-coord Z-coord

Vertex] 1 Yes 0.500000 -1.000000 1.500000
Vertex2 2 Yes 0.500000 1.000000 1.500000
Vertex3 3 Yes -0.500000 1.000000 1.500000
Vertex4 4 Yes -0.500000 -1.000000 1.500000
Vertex5 5 Yes 0.500000 1.000000 -1.500000
Vertex6 6 Yes 0.500000 -1.000000 -1.500000
Vertex7 7 Yes -0.500000 -1.000000 -1.500000
Vertex8 8 Yes -0.500000 1.000000 -1.500000
| Table 3-10Sample Output from ‘List Hex’ Command

CUBIT> list hex 1000 to 6000 by 1000

Hex ID ExodusID Owned By Contains Nodes:

1000 1000 Volume 1 2886 1358 28 126
3057 1357 27 125

2000 2000 Volume 1 3741 1353 23 121
3912 1352 22 120

3000 3000 Volume 1 4596 1348 18 116
4767 1347 17 115

4000 4000 Volume 1 5451 1343 13 111
5622 1342 12 110

5000 5000 Volume 1 6306 1338 8 106
6477 1337 7 105

6000 6000 Volume 1 7161 1333 3 101
691 690 1 82

Special Entity Information

Special entities include element blocks, sidesets and nodesets (boundary conditions), and
boundary layers.Whisker weaving-specific information including whisker sheets and whisker
hexes are also considered special entities. This information includes the number of mesh entities
in the special entity and a list of the geometry entities owned by the special entity. Sample output
for the list block, list sideset, and list nodeset commands are show in Table 3-14, Table 3-15,
and Table 3-16, respectively.

60 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

| Table 3-11Sample Output from ‘List Face’ Command

CUBIT> list face 1 to 7876 by 1000

Mesh Face Owned By Nodal Connectivity Shared by Hexes:

1 Surface 6 1 3 101 82 6000

1001 Surface 3 662 1072 1101 682 5820

2001 Surface 5 2009 2010 2039 2038 3921
3001 Volume 1 2143 2412 2583 2142 441 461
4001 Volume 1 1208 3646 3665 1237 1700 1900
5001 Volume 1 4577 1319 1318 4748 2960 2980
6001 Volume 1 5777 5776 602 573 4183 4383
7001 Volume 1 6638 6637 6808 6809 5389

| Table 3-12Sample Output from ‘List Edge’ Command

CUBIT> list edge 1 to 9854 by 1000

Edge Owned By Start/End Node Length Shared by Faces:

1 Curve 10 1 3 0.100000 1 1271

1001 Surface 6 543 542 0.100000 458 488 6331

2001 Surface 2 1047 1046 0.100000 954 974 2300

3001 Surface 4 1543 1542 0.100000 1458 1488 6230

4001 Surface 5 1992 2021 0.100000 1982 1983 3852
5001 Volume 1 2393 2222 0.100000 2830 2831 2836
6001 Volume 1 3551 3532 0.100000 3854 3855 4018
7001 Volume 1 4589 319 0.100000 4879 4880 4883 5043
8001 Volume 1 5629 5458 0.100000 5905 5906 5909
9001 Volume 1 6668 6497 0.100000 6930 6931 6936

| Table 3-13Sample Output from ‘List Node’ Command

CUBIT> list node 1 to 7161 by 1000
Node X-coord Y-coord Z-coord Owner
1 0.500000 -1.000000 1.500000 Vertex 1

1001 -0.100000 0.400000 -1.500000 Surface 2
2001 0.200000 1.000000 1.300000 Surface 5
3001 0.200000 0.900000 -1.000000 Volume 1
4001 0.000000 -0.300000 -0.400000 Volume 1
5001 -0.100000 0.400000 0.200000 Volume 1
6001 -0.300000 -0.800000 0.800000 Volume 1
7001 -0.400000 -0.100000 1.400000 Volume 1
| Table 3-14Sample Output from ‘List Block’ Command

CUBIT> list block 1

Block 1 contains 6000 3D element(s) of type HEX8.
Owned Entities:
Volume 1 Meshed

Other Information

Other non-geometry and non-mesh information is also provided through the list commands.
These include message output settings, memory usage, and graphics settings.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuabl

CHAPTER 3 Environment

Table 3-15Sample Output from ‘List SideSet’ Command

CUBIT> list sideset 1

SideSet 1: contains 200 element sides.
Owned Entities:
Surface 2 Meshed

Table 3-16Sample Output from ‘List NodeSet’ Command

CUBIT> list nodeset 1

NodeSet 1: contains 231 nodes.
Owned Entities:
Surface 1 Meshed

62

Message Output Settings

There are several types of messages output by CUBIT that are of interest to CUBIT users and
developers. These messages and the type of information they convey are:

* Information- messages that contain information that is helpful to the user, but not critical to
the operation of the program.

* Warning - messages that signal problems that may or may not be important to the operation
of CUBIT.

» Error - messages signaling errors in the operation of CUBIT; these types of errors usually
resultin the termination of the program.

» Debug -debugging messages used by CUBIT developers.

The printing of Information, Warning and Debug messages can be turned on or off with the
appropriate set command (Error messages are always printed). There are multiple Debug
message flags, each controlling debug output for a different part of CUBIT. The value of each
message flag or all message flags can be printed withisheSettings command. The
commands used to print the value of message flags are:

list {echo | info | warning | journal | debug | settings}

Message flags can also be set using command line options; the Warning and Information flags
are set with-warning={on|off} and -information={on|off} options, respectively. The

Debug flags are set witdebug=<setting> , where<setting> is a comma-separated list of
integers or ranges of integers. An integer range is specified by separating the beginning and the
end of the range by a hyphen. For example, to set debug flags 1, 3, and 8 to 10 on, the syntax
would be -debug=1,3,8-10. Flags not specified are off by default. Debug messages are typically
of importance only to developers and are not normally used in normal execution.

The List Settings command lists the value of all the message flags, as well as the journal file
and command echo settings; an example of the output from this command is shown in Table 3-
17. The first several lines indicate the current settings of the debug flags, where the debug output
will be output if the flag is on, and a short description of the purpose of the debug flag. For
example, debug flag is enabled, its output will be written to the file ‘timing.log’ and the purpose
of the flag is to output timing information.

Following the debug flag information is the settings of the echo, info, journal, and warning flags.
Typically these should always be enabled. The final line of the output indicates whether logging
is enabled and if so, where the information will be output. If logging is enabled, all echo, info,

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

warning, and error messages will be output both to the terminal and to the logging file. The other
options to the list command select specific subsets of the list settings output.

The settings of the info, warning, journal, logging, and debug flags is set via the following
commands:

[set] logging {on | off} file filename’
[set] {info | warning | journal} {on | off}
[set] debug <id> {on | off} terminal

[set] debug <id> {on | off} file ‘filename’.

Table 3-17Sample Output from ‘List Settings’ Command

CUBIT> list settings

Debug Flag Settings (flag number, setting, output to, description):

1 OFF terminal User Interface: If flag is enabled, filenames being
used for input will be echoed and each input line
will be echoed prior to being parsed.

2 OFF terminal Whisker weaving information
3 ON ‘timing.log’ Timing information for 3D Meshing routines.
4 OFF terminal Testing of video generation - if on then

video specific drawing is enabled and related debug
statements will be printed.
... (several lines deleted) ...

45 OFF terminal Pillow Sheet debugging

46 OFF terminal Paver breakout detection (expensive)
echo =0n

inffo =0On

journal =0On
warning =0n
logging = On, log file = ‘test.log’

Graphical Display Information

The list view command provides information about the current settings of various graphics
parameters. Sample output from this command is shown in Table 3-18. See the description of

the See “Graphics” on page 44. for a description of this information.

Memory Usage Information

Information about CUBIT’s memory usage can be obtained froristt@emory command.

An optional identifier can be specified which will restrict the output to the memory usage for

those types of objects only. The command syntax is:

List Memory [‘'<object type>']

Sample output from the list memory command is shown in Table 3-19. This output is typically
only of interest to CUBIT developers, so no interpretation of the output will be given here. If
you need more details on this command, please contact one of the CUBIT developers..

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab3

CHAPTER 3 Environment

Table 3-18Sample Output from ‘List View’ Command

CUBIT> list view

...Current View Parameters

From: < 0.000000i 0.000000j 5.654066k> (absolute)

At: < 0.000000i 0.000000j 0.000000k>

Up: < 0.000000i 1.000000j 0.000000k>

View: < 0.000000i 0.000000j 1.000000k> (From - At, normalized)

Distance from ‘from’ to ‘at’ is 5.654066.
Displayed view size is 4.115823 horizontal by 4.115823 vertical.

Perspective Angle is 40.000000 degrees.
Drawing Mode is ‘wireframe’.
AutoCenter ON, AutoClear ON, Axis OFF, Border ON.

| Table 3-19Sample Output from ‘List Memory’ Command

CUBIT> list memory
Dynamic Memory Allocation per Object
... (several lines deleted) ...
Object Name: DLList
Object Size: 48 Allocation Increment: 4096
Allocated Objects: 4096 (bytes) 196608 (4% of Total)
Free Objects: 142 (bytes) 6816 (3%)
Used Objects: 3954 (bytes) 189792 (96%)
Object Name: ArrayMemory
Object Size: 32 Allocation Increment: 8192
Allocated Objects: 16384 (bytes) 524288 (12% of Total)
Free Objects: 2508 (bytes) 80256 (15%)
Used Objects: 13876 (bytes) 444032 (84%)
Total Memory Allocation Information (bytes)
Allocated Memory: 4153344
Free Memory: 358160 (8%)
Used Memory: 3795184 (91%)

Total non-pool ArrayBasedContainer memory allocation = 123338 (bytes)
Maximum non-pool ArrayBasedContainer memory allocated = 132415 (bytes)

v Picking

A limited command-line capability exists to pick geometric entities in the CUBIT model. The
user issues theick command, then clicks on the entity to be identified; CUBIT then reports

64 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 3 Environment

the id number and name of the picked entity in the command window. The following picking
commands are available:

Pick {curve|surface|lump|volume|body [list]}

If the [list] option is used, information about that entity is listed in the command window as if
theList command had been issued.

v Help Facility

Two help systems are available in CUBIT: an window-based hypertext help facility and a text-
based help facility. The user can access the hypertext help facility by tygeatchelp and the

text-based help facility by enteringelp. To attain further information about specific
commands, the user can enter a specific keyword name after theetprior hyperhelp .

The text-based help facility prints only the usage syntax for the specified keyword. It is accessed
by typinghelp <keyword> . For example, typingelp volume would output the syntax for

all volume commands to the standard output window. If no keyword is entered, a list of all valid
keywords is output. The text-based help facility is accessed from the GUI version of CUBIT by
typing help in the command line text field.

The window-based hypertext help facility is accessed by typypgrhelp <keyword> . A

window should pop-up containing a representation of the command index portion of this

manual. Additional keyword parameters can be entered following the keyword to obtain more
| specific help. For exampleiew at hyperhelp would provide help on théew at command

rather than general help on tfiew command.

The hypertext help facility can be accessed from the GUI version of CUBIT by selecting the
Help menu item on the main menu or by clicking biedp button on specific windows for help
| specific to those windows.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab5

CHAPTER 3 Environment

66 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Chapter 4. Geometry '

v Geometry Definition...67
v Geometry Creation...69
v Geometry Manipulation...78

v Geometry Decomposition...84

v Geometry Consolidation...85

This chapter describes methods available in CUBIT to produce and manipulaje
the geometry needed for meshing. Definitions of geometric entities and the
structure of the nonmanifold geometry represented by CUBIT are given. This|is
followed by sections describing geometry importation, creation ang
modification. Geometry consolidation, the process of generating ceIIuIaI
topology from a manifold model, is also described.

v Geometry Definition

All geometric entities that exist in the CUBIT environment are represented by a solid model. In
two dimensional modeling systems, a list of connected directional line segments is sufficient to
provide a complete and unambiguous geometric definition. In three dimensions, only a solid
model representation can guarantee complete and unambiguous geometry. All meshing tools
available in CUBIT use this solid model geometry when generating the discretized
representation of the geometry, i.e. the mesh. ACiSthe solid modeling engine currently

used by CUBIT. However, CUBIT uses its own geometric overlay to represent a non-manifold
cellular topology for meshing.

Geometric Topology

Topology refers to the manner in which geometric entities are connected within the solid model.
Within CUBIT, the geometric entities consist wértices, curves, surfaces, volumesd
bodiesA collection of one or more of these entities can be created and is cgledpa hey

are defined as follows:

Vertex

A vertex occupies a single point in space. A vertex is used to bound a curve and/or to specify a
specific location for a node. A vertex which is located in the interior of a surface is called a hard
point. It is used to force a node location to that specific geometric location.

Curve

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab7

CHAPTER 4 Geometry

A curve is a line (not necessarily straight) which is bounded by at least one but not more than
two vertices. An example of a single vertex curve (both ends of the curve meet the same vertex)
might be the curve which bounds an end cap surface of a cylinder. A curve is used to bound a
surface. Curves may be generated independent of surfaces and as such used to specify the
geometry for a sequence of bar or beam elements.

Surface

A surface in CUBIT is a finite bounded portion of some geometric surface (finite or infinite).

A set of surfaces bound the volume in a volume. A surface is bounded by a set of curves.
Surfaces must have at least one bounding curve to be meshed in CUBIT. Surfaces may be
generated independent of volumes. Such free surfaces may be used to specify the geometry for
shell elements. A periodic surface is a surface which is not contained within a single exterior
loop of edges. Itis termed periodic because the regular parameterization of the surface will have
a jump fromO to 2mtin the periodic direction.

Volume

Volumes are volumetric regions and are always bounded by one or more surfaces. For practical
consideration, volumes will always be bounded by two or more surfaces. CUBIT currently
cannot mesh a volume bounded by only one surface (e.g. a sphere) since such a surface has no
bounding curves.

Body

A body is simply a collection or set of volumes. It differs from volumes only in the fact that
booleans are only performed between bodies, not between volumes. The simplest body contains
one volume.

Group

A group is a collection of one or more geometric entities (including other groups).
The command syntax to create or modify a group is:

group {id | “name”} add <list of geometry entities>
For example, the command

group “Exterior” add surface 1 to 2, curve 3t0 5

will create the group namegixterior consisting of the listed geometric entities. Any of the
commands that can be applied to regular geometric entities can be applied to groups, for
example,mesh Exterior , list Exterior , or draw Exterior . A geometric entity can be
removed from a group using the command:

group <id> remove <list of geometry entities>

When a group is meshed, CUBIT will automatically perform an interval matching on all
mapped, submapped, and trimapped surfaces in the group (including surfaces that are a part of
volumes or bodies in the group).

Cellular Topology
Cellular topology (non-manifold topology) allows the connection of any number of surfaces to

curves. A typical manifold model (or 2-manifold topology) only allows two surfaces to be
bounded by a single curve. Cellular topology, because of its more general nature, allows two

68 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

adjacent volumes to share a common surface between them as shown in Figure 4-1. It also
allows the formation of dangling faces and edges (Figure 4-2). These geometric constructs are
sometimes useful in generating complex meshes.

Figure 4-1 Cellular Topology Between Volumes

} Dangling
\ Face

, - Dangling
, Edge

Figure 4-2 Dangling Faces & Edges

Cellular topology’s advantage for mesh generation is that, when used properly, it eliminates the
problem of equivalencing the mesh entities that are supposed to be shared between adjacent
geometric entities (for instance, the common surface (Web) shown in Figure 4-1). It also
supports the formation of dangling faces and dangling edges as shown in Figure 4-2. This allows
the proper connection of surface, beam, and/or solid mesh elements.

v Geometry Creation

The examples in “Examples” on page 147 show solid model construction using several standard

techniques. One technique is to use primitives (e.g. bricks, cylinders, spheres, etc.) and perform
booleans (e.g. subtractions, intersections, and unions) on the primitives to generate the desired
geometric shape. Another approach is to construct two-dimensional wireframe geometry and

then perform a sweep (either along a path or about an axis) to create the three-dimensional solid
model. As the examples indicate, it is necessary to save the solid model to a disk file (using a
.sat filename extension) for subsequent meshing in CUBIT.

CUBIT geometry may be created within CUBIT using basic primitives and/or the sketchpad in
combination with the boolean operators. The generation of geometric primitives and their
manipulation and positioning will be discussed first in this section, with the boolean operations
covered afterwards. Geometry may also be produced using several programs and imported into
CUBIT through ACIS' format files. Several of these packages are discussed later in this
section.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab9

CHAPTER 4 Geometry

Since the geometry acts as the template for discretization into a mesh, care must be taken to
insure an appropriate representation for the problem being analyzed. Users will find that
building solid models of “real parts” will likely consist of a combination of the approaches
mentioned above.

Geometry Primitives

Geometry primitives are classes of general geometric shapes which are differentiated by basic
parameters. For example, a cylinder is a basic shape that can be specified by the parameters
height andradius Primitives available in CUBIT include the brick, cylinder, torus, prism,
frustum, pyramid, and sphere. These primitives can be generated and used in boolean operations
to produce very complex shapes. The geometric primitives can also be used in boolean
operations with geometry generated through other means (e.g. using the sketch pad, or geometry
read in from other sources). When using the GUI, the geometric primitives can be generated
using thePrimitives suboption in th&Geometry menu. Figure 4-3 shows a sample of the
available primitives.

.

Frustum
(Cone)

Figure 4-3 CUBIT Geometry Primitives

Brick

The brick is a cuboid where all the surfaces intersect at right angles. Figure 4-4 shows the
Geometry Primitives dialog box whemBrick is chosen. There are three parameters that may
be specifiedWidth (x-dimension),Depth (y-dimension), andHeight (z-dimension). Only

Width is required. If only &Vidth value is specified, the other two values default to that value,

70 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

thus producing a cube. Theply button will generate the brick. The equivalent command to
generate a brick using the command line is

[create] brick width <x-dimension> [depth <y-dim> height <z-dim>]
[create] brick x <x-dimension> [y <y-dim> z <z-dim>]

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin and aligned with the coordinate axes.

Create a brick

Brick o
Cylinder vwidth [x]
Frustum

Depth [y] (opt)
Prism :

Height [2] (opt)
Pyramid
Sphere
Torus
Hhtenta

APPLY | CAMCEL | HELP

Figure 4-4 Brick Creation Dialog Box

Cylinder

The cylinder is a constant radius tube with right circular ends. Figure 4-5 shows the relevant
portion of theGeometry Primitives dialog box wherCylinder is chosen.There are two
parameters that must be specifigléjght (z-dimension), an®Radius (x/y-dimension). The

Apply button will generate the cylinder. The equivalent command to generate a cylinder is

[create] cylinder height <z-height> radius <x/y-radius>
[create] cylinder z <z-height> radius <x/y-radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin and aligned with the length of the cylinder along the z-axis.

same value.

& Note: A cylinder may also be created using filustum command with all radii set to the

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/ 1

CHAPTER 4 Geometry

Create a simple cylinder

Brick e

Cylinder Height [z]

Frustum Radius [x/y]

Prism

Pyramid |

Figure 4-5 Cylinder Creation Dialog Box
Prism

The prism is an n-sided, constant radius tube with n-sided planar faces around the tube. Figure
4-5 shows the relevant portion of tBeometry Primitives dialog box wherPrism is chosen

There are three parameters that must be spedifigight (z-dimension)Sides (number of

sides) andRadius (x/y-dimension). The radius defines the circle circumscribing the prism
cross-section. Thapply button will generate the prism. The equivalent commands to generate
prisms are:

[create] prism height <z-height> sides <nsides> radius <x/y-radius>
[create] prism z <z-height> sides <nsides> radius <x/y-radius>

[create] prism height <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius>

[create] prism z <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius>

The new body contains one volume which will be given the next highest body ID number. The

prism will be centered about the origin and aligned with the height of the cylinder along the z-

axis. One of the planar sides will be perpendicular with the X-axis.The number of sides must be
greater than or equal to three.

Create an elliptical prism

Brick Harn

Byl 217 Height |z]

Frustim |\ I sige count

Prism . -
Major Radius [x]

Pyramid

— Minor Radius [y]

Sphere

Figure 4-6 Prism Creation Dialog Box

72 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

Note: A prism may also be created usinggieamid command with all radii set to the same
value.
Frustum

A frustum is a general elliptical right frustum. It can be thought of as a portion of a right
elliptical cone. The elliptical nature comes by allowing a different radius in the two principle
directions of the cone. Figure 4-7 shows the relevant portion db¢menetry Primitives

dialog box wherfrustum is chosen. There are four parameters that may be spektiéigght
(z-dimension),Major Radius (x-radius),Minor Radius (y-radius) andTop Radius (x-

radius at the top). The top y radius is calculated based on the ratio of the major and minor radii
given.If onlyHeight andMajor Radius are specified, the other two radii are defaulted to the
major radius value. If all radii are equal, a frustum defaults to a simple cylindeApfihe

button will generate the frustum. The command to generate a frustum using the command line is

[create] frustum height <z-height> major [radius] <x-radius>
minor [radius] <y-radius> top <top-x-radius>

[create] frustum z <z-height> major [radius] <x-radius>
minor [radius] <y-radius> top <top-x-radius>

The new body contains one volume which will be given the next highest body ID number. The
frustum will be centered about the origin with the central frustum axis aligned with the z-axis.

Create an elliptical frustum

Brick e
LyLlnde Height [z]
Frustum Major Radius [x]

Prism : -
Minor Radius [y]

Pyramid

— Top Radius [%]

Sphere

Figure 4-7 Frustum Creation Dialog Box
Pyramid

A pyramid is a general n-sided prism. It can be thought of as a portion of a right elliptical cone.
The elliptical nature comes by allowing different circumscribing radii in the two principle
directions of the pyramid. Figure 4-7 shows the relevant portion @¢loenetry Primitives

dialog box wherPyramid is chosen. There are five parameters that may be spekiiryht
(z-dimension),Major Radius (x-radius),Minor Radius (y-radius) andTop Radius (x-

radius at the top). The top y radius is calculated based on the ratio of the major and minor radii
given. If onlyHeight, Sides, andMajor Radius are specified, the other two radii default to

the major radius value. If all radii are equal, a pyramid defaults to a simple n-sided prism. The

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/3

CHAPTER 4 Geometry

Apply button will generate the pyramid. The command to generate a pyramid using the
command line is

[create] pyramid height <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius> top <top-x-radius>

[create] pyramid z <z-height> sides <nsides> major [radius] <x-radius>
minor [radius] <y-radius> top <top-x-radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin with the central pyramid axis aligned with the z-axis.

Create a pyramid

Brick s
it e Height [z]
Frustum Side Count
Prism . -
Major Radius [=]
Pyramid
Minor Radius [y]
Sphere
e Top Radius [x]
Torus

Figure 4-8 Pyramid Creation Dialog Box
Sphere

The sphere command generates a simple sphere. Figure 4-9 shows the relevant portion
Geometry Primitives dialog box whernSphere is chosen. Only one parameter may be
specified,Radius . The Apply button will generate the sphere. The command to generate a
sphere from the command line is

[create] sphere radius <radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin. Since portions of spheres are commonly generated, the capability
to generate hemispheres, quadrants, and octants is provided. The syntax is

[create] sphere radius <radius> [inner radius] <inner_radius>
[delete] [xpositive] [ypositive] [zpositive]

If inner_radius is specified, a hollow sphere will be created with the specified inner radius. The
identifiersxpositive , ypositive , andzpositive specify which portion of the sphere will be
retained, or if thelelete identifier is present, the portion of the sphere which will be removed.
For example, to create an hemisphere in the positive x direction, enter the command:

sphere radius 5 xpositive

Torus

74 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

Create a sphere
Brick o
Cylinder Radius
Frustum
Prism
Pyramid
Sphere

Figure 4-9 Sphere Creation Dialog Box

The torus command generates a simple torus. Figure 4-10 shows the relevant portion of the
Geometry Primitives dialog whenTorus is chosen.Two parameters must be specified,
Major Radius , or the radius of the spine of the desired torusMindr Radius , or the radius

of the cross-section of the ring. The minor radius must be less than the major radAppiyhe

button will generate the torus. The command to generate a torus from the command line is

[create] torus major [radius] <major-radius> minor [radius] <minor-radius>

The new body contains one volume which will be given the next highest body ID number. It will
be centered about the origin with the spline of the torus aligned perpendicular to the z-axis.

Brick Hnrae

Ll Major Radius

T Kinor Radius

Prism
Pyramid

Sphere

Torus

Figure 4-10 Torus Creation Dialog Box

Sketchpad Geometry

The sketchpad is used to construct two-dimensional wireframe geometry profiles. The profiles
can be swept (either along a path or about an axis) to form more general solid bodies than
geometry primitives. The swept bodies created with the sketchpad can be used in boolean
operations with other geometry (e.g. primitives, other swept bodies, or geometry read in from

other sources). The sketchpad is activated by selectif@k#ieh suboption in th&eometry

menu. The sketchpad is active when the sketch creation dialog box shown in Figure 4-11 is
visible. The sketchpad is only available from the GUI version of CUBIT at this time.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/5

CHAPTER 4 Geometry

Sketch a line

Pl Py

Line w

Box

Round
Chamfer
Arc

gy, L

ard, Ling

APPLY I C.H.NCELl HiLE

Figure 4-11 Sketch Creation Dialog Box
Sketch Overview

Creating a sketched profile is a two step operation: first define a polygonal outline and then
refine the outline by chamfering or filleting corners or by pulling edges of the polygon into arc
shape. The sketch primitives (line, box, round, chamfer, or arc) are created by clicking the
corresponding button in the left column of the sketch creation dialog box. Then, in the graphics
window, press the middle mouse button, drag the mouse to create the desired shape, and then
release the mouse button. While dragging the mouse, the sketchpad provides rubber band
feedback. When the sketched profile is complete, accept it by pressitsgptiye button. The
sketchpad will close the profile and create a two-dimensional wireframe geometry profile. The
sketch can be aborted by pressingGlaacel button.

Polygonal Outline

The primary method for creating the polygonal outline is to usédirtheprimitive. The first
mouse press defines a starting point for the outline. Mouse release defines diagalfjtiie
sketched line is nearly horizontal or nearly vertical, the sketchpad will adjust the line. The other
method for creating part of the polygonal outline is to usebtheprimitive. The box is a
shortcut for sketching three lines in order to create a horizontal or vertical slot or tab. If the line
created before the box is more closely horizontal than vertical, then the slot or tab created will
be vertical. Similarly, if the box is attached to a roughly vertical face, the resulting slot or tab
will be horizontal.

76 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

Outline Refinement

The polygonal outline can be refined by chamfering or rounding any corner. After selecting the
appropriate optiongchamfer or round, press the middle mouse button near the corner to be
modified and drag the profile to see the effect of the modification. During drag, feedback is the
same for chamfer and round. When the profile is finally created rounds will be correct.

Another way to refine the outline is to bend any line into an arc. After selectiagctbption,
press the middle mouse button near the middle of a line to be modified and drag the profile to
see the effect of the modification.

Importing Geometry

Capabilities exist to use geometry files generated using the-AIS Harness, Pro/Engineer,
or FASTQ. All geometry read into CUBIT must be in the form of ACflles. The ACIS/ Test
Harness can generate ACISiles directly. Pro/Engineer and FASTQ files must first be
translated into the ACISformat before being usable with CUBIT.

Importing ACIS Files

Externally-generated ACISfiles can be read into CUBIT by selecting theport > Acis
options under th&ile menu in the GUI. The command line syntax for this command is:

Import Acis '<acis_filename>’

Note that the filename must be enclosed in single quotes.

ACIS Test Harness

The ACIS? test harness is a convenient method to generate geometry, since it is available on
every platform which maintains an ACldicense which includes all systems on which CUBIT

is available. The test harness can be used to create geometric models via boolean operations
(unions, differences, and intersections) and sweeps of wire profiles.

The ACIS test harness is a solid model construction program that supports English-like
commands entered via the keyboard, and provides simple graphic output in a graphics window.
Users should find it similar to FASTQ [5] and GEN3D [10] in that all commands entered during

a session are saved in a monitor file (.mon extension) that can be subsequently replayed at a later
time to re-generate the model. The graphics window is only displayed when a draw command
is entered, thus simplifying batch processing (draw commands may be commented out with a
‘#' character). Additionally, Aprepro [13] may be used to evaluate any algebraic expression in
the ACIS monitor file, allowing for parameterized geometry construction.

PRO/Engineer

The PRO/Engineérproduct can also be used to create CUBIT geometry, although the support
for this package is still being developed. Converters are being implemented which manage the
translation of PRO/Enginéerassembly data into ACtSformat.

This solution is being pursued to address user needs and requirements regarding standard
geometry formats at Sandia National Laboratories. Advantages to this creation method include
the availability of the large number of parts being designed under the PRO/EHdimeet.
PRO/Engineét documentation and training is available at Sandia including consulting on an
as-needed basis. Disadvantages include the single direction translation through which these
parts must be sent to convert them to ACISome difficulties with numerical accuracy

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/ 7

CHAPTER 4 Geometry

A

involving PRO/Engine& have been cited although no negative impact of this on CUBIT
meshing functionality has yet been observed.

FASTQ

Support for reading a FASTQ file directly into CUBIT is available. FASTQ files are imported
into CUBIT using thémport Fastq command or thémport > Fastq option under the File
menu in the GUI. The command line command syntax is:

Import Fastq '<fastg_filename>’

All FASTQ commands are fully supported except for Bmdy command, some of the
Scheme commands, and the non-circular arcs. At the current time, only the mapping, paving,
and triangle primitive scheme commands are handled. The pentagon, semicircle, and transition
primitives are not handled directly, but are meshed using the paving scheme. The FASTQ input
file may have to be modified if the Scheme commands use any non-alphabetic characters such
as '+, ‘(, or ‘). Circular lines with non-constant radius are generated as a logarithmic
decrement spiral in FASTQ); in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by nature will be defined in a plane, it must be projected or swept to generate
three dimensional geometry. Since this sweeping operation cannot currently be executed within
CUBIT, only two-dimensional meshing of the FASTQ geometry can be performed. If three-
dimensional geometry generated from the FASTQ geometry is requirddgdos translator

should be used. It will generate ACIS files which can be used in the ACIS Test Harness and
projected or swept to generate three-dimensional geometry which can be imported into CUBIT.

v Geometry Manipulation

Bodies can be translated, rotated, reflected, scaled, and copied in order to position them
correctly before performing other tasks associated with generating a model. Boolean operations
can also be performed between bodies. The transform operations which translate, reflect, scale,
rotate and copy are described first in this section, followed by a description of the boolean
operations intersect, subtract and unite.

Transform Operations

The translate, reflect, scale, and rotate functions do not create new geometry, whereas the copy,
intersect, subtract and unite functions do create new geometry. If running the GUI, the
Transform submenu of th&eometry menu is used for these operations.

Copy

The copy command copies an existing body to a new body without modifying the existing body.
Figure 4-12 shows the dialog box that appears wherCtpy option is chosen. Simply
inserting a body ID in thBody Name and then pressing tiAgply button will generate a new

copy at the same location as the old one. When using the command interface, a copy can be

78 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

made of several bodies at once, and the group can be translated with a specified offset, or rotated
about a given vector. The commands for copying a body from the command line are

body <range> copy [move <x-offset> <y-offset> <z-offset>]

body <range> copy [reflect {x | y | z}]

body <range> copy [reflect <x-comp> <y-comp> <z-comp>]

body <range> copy [rotate <angle> about {x | y | z}]

body <range> copy [rotate <angle> about <x-comp> <y-comp> <z-comp>]
body <range> copy [scale <scale-factor>]

If the copy command is used to generate new bodies, a copy of the original mesh generated in
the original body can also be copied directly into the new body. This is currently limited to
copies that do not interact with adjacent geometry. For details on mesh copies, see “Mesh
Duplication” on page 114.

Copy a body

Copy Body Hame

Move
Reflect
Restore
Rotate

Scale

APPLY | CAMCEL | HELP

Figure 4-12 Body Copy Dialog Box

Move

The move command moves a body without adding any new geometry. Figure 4-13 shows the
relevant portion of the dialog box that appears wherMbee option is chosen. Inserting a

body ID in theBody Name slot and filling in any of the offsets desired will move the body
once théApply button is pushed. Ar@ffset buttons not filled in are assumed to be zero. When
using the command interface, a range of bodies to move can be specified

body <range> [copy] move <x-offset> <y-offset> <z-offset>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/9

CHAPTER 4 Geometry

Move a hody
Copy Body Hame
LR x Offset
Reflect ||y orfset
Restore
JE— Z Offset
Rotate

Figure 4-13 Body Move Dialog Box
Scale

The scale command resizes the body without adding any new geometry. Figure 4-13 shows the
relevant portion of the dialog box that appears wherSttade option is chosen. Inserting a

body ID in theBody Name slot and filling in the desired scale will resize the body once the
Apply button is pushed. The body will be scaled about its centroid. When using the command
interface, a range of bodies to scale can be specified

body <range> [copy] scale <scale>

Scale a hody
Copy Body Name
Move Scale Factor
Reflect
Restore
Rotate

Scale I

Figure 4-14 Body Scale Dialog Box

Rotate

The rotate command rotates a body about a given axis without adding any new geometry. Figure
4-15 shows the relevant portion of the dialog box that appears whdRotate option is
chosen. Inserting a body ID in tBedy Name slot and filling in arAngle as well as any of

the vectorComponents desired will rotate the body once thpply button is pushed. If the

Angle or anyComponents are not filled in they are defaulted to be zero. When using the

80 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

command interface, a range of bodies to be rotated can be specified, as well as a rotation about
one of the cartesian axes:

body <range> [copy] rotate <angle> about {x | y | z}

body <range> [copy] rotate <angle> about <x-comp> <y-comp> <z-comp>

Rotate a body about a vector

Copy Body Hame
sl A Component
Reflect Y Component
Restore

£ Component
Rotate

Angle
Scale

Figure 4-15 Body Rotate Dialog Box
Reflect

The reflect command mirrors a body about a plane normal to an arbitrary vector without adding
any new geometry. Figure 4-13 shows the relevant portion of the dialog box that appears when
the Reflect option is chosen. Inserting a body ID in thedy Name slot and filling in the
components of the reflection vector reflects the body about a plane normal to this vector once
the Apply button is pushed. Any vect@omponent buttons not filled in are assumed to be

zero. When using the command interface, a range of bodies to be reflected can be specified as
well as directly specifying a plane normal to one of the coordinate axes.

body <range> [copy] reflect <x-comp> <y-comp> <z-comp>

body <range> [copy] reflect {x | y | z}

Reflect a body through a vector

Copy Body Hame
T X Component
Restore

£ Component
Rotate

Figure 4-16 Body Reflect Dialog Box
Restore

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB1

CHAPTER 4 Geometry

The restore command removes all previous geometry transformations from the specified body.
Execution of this command is similar to the copy command except that the Restore button is

selected in the Dialog Box. When using the command interface, a range of bodies to be restored
can be specified.

body <range> restore

Boolean Operations

Boolean operators allow boolean interactions (e.g. intersection, union, etc.) between bodies to
produce a new body. The boolean operators available in CUBIT for modifying bodies are
intersect, subtract and unite. When using the GUI, the boolean operators are available under the
Geometry menu’'sBooleans option.

Intersect

The intersect command generates a new body composed of the portions of the geometry that are
shared by both. Both of the original bodies will be deleted and the new body will be given the
next highest body ID available. Figure 4-17 showsGkemetry Booleans dialog when the
Intersect option is chosen.The command line command syntax is

Intersect <body_id> With <body_id>

Intersect Body1 with BodyZ2

Intersect Body1 Hame
Subtract Body2 Name
Unite ey Baly Hams
Huoiog

Hins

i

APPLY | CAMCEL | HELP

Figure 4-17 Intersect Boolean Dialog Box
Subtract

The subtract operator will subtract one body from another. The order of subtraction is
significant. Both of the original bodies will be deleted and the new body will be given the next

82 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

highest body ID available. Figure 4-18 shows the relevant portion Gigdbmetry Booleans
dialog box pertaining to subtract when Bgtract option is chosen. When tigply button
is pressed, Body? is subtracted from Bodyl. The command line command syntax is

Subtract <body_id> From <body_id>.

Subtract Bodyl from BodyZ

Intersect Bodyl Name
Sl £ BodyZ2 Hame
Unite Rhavgr Bhahy Sl

Figure 4-18 Subtract Boolean Dialog Box
Unite

The unite operator will combine two or more bodies into a single body. The original bodies will
be deleted and the new body will be given the next highest body ID available. The command
line command syntax is

Unite <body_id> With <body_id>
Unite Body <list_of body ids> [All]

The second form of the command permits the uniting of multiple bodies in a single operation.
If the All identifier is entered instead of a list of body ids, all bodies in the model will be united
into a single body.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB3

CHAPTER 4 Geometry

v Geometry Decomposition

The capability to perform geometry decomposition within CUBIT is currently under active
development. At the current time, geometry decomposition can only be performed crudely
using boolean operations. A more robust and capable method called Web Cutting is not yet
functional, but should be available in the near future.

Web Cutting
Web cutting allows the insertion of webs or faces between pieces of the geometry to facilitate
meshing. Web cutting, although still being developed, should allow a user to decompose the
geometry without the generation and use of boolean operations. This should greatly simplify the

decomposition task.

When using the GUI, web cutting may be accomplished by choosif@ettempose option
from theGeometry menu. A submenu will appear with tideb Cutting button. The dialog
| shown in Figure 4-19 will appear. A web is inserted by selecting a body, designating a plane,

Body ID to Cut w®,

select A Plane Choice:

- Face 4 3 Vertices

Yertex 1 1D

Yertex 2 1D

AAA

Yertex 3 1D

Optional Vector:

To Vertex

From VYertex

APPLY HELD | CAMCEL |

Figure 4-19 Web Cutting Dialog

and optionally specifying a vector. The body is supplied irBigy ID to Cut box (picking

is optional). With the radio buttons in the areaSaflect A Plane Choice the desired
mechanism for defining a plane can be designated. Seldeitey will require a face ID.
Selecting3 Vertices will require 3 vertex IDs to define the plane. Thptional Vertex

option allows the designation of a vector in the direction the cut is desired. Without this
designation, the program will fire rays in multiple directions tangent to the plane to calculate an
intersection loop. The ID of the vertex at the origin of the vector is entefeadrnim Vertex .

The ID of the vertex in the direction of the cut is enteretbivertex . TheHelp button will

84 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

provide a brief help message if the help system is installed on the system. Web cutting is
initiated by pressing thépply button. The commands to perform web cutting using the
command line are:

Webcut Body <body_id> Face <face_id> [Vector <from_vertex> <to_vertex>]

Webcut Body <body_id> Vertex <vertex_1> Vertex <vertex_2>
Vertex <vertex_3> [Vector <from_vertex> <to_vertex>]

The first command corresponds to using a face to specify the cutting plane and the second
command uses three vertices to define the cutting plane. An optional vector defined by two
vertices can be used to designate the direction of the cut.

Body-Based Decomposition

Primitive geometry decomposition can be performed using the geometry boolean operations
available in CUBIT. An accelerated version of this type of operation is provided as well. If two
ACIS bodies overlap in space, they can be decomposed into three separate bodies (one body
contining the overlapping region and two bodies containing the non-overlapping pieces of the
original bodies) using thBecompose command:

Decompose <body_id> With <body_id>

The three bodies resulting from this operation will have manifold surfaces; geometry
consolidation should be used if these surfaces are to be represented with a single mesh
(see“Geometry Consolidation” on page 85).

v Geometry Consolidation

Geometry consolidation is a means of enforcing mesh continuity and avoiding mesh node
equivalencing. When a (manifold) solid model is constructed, it may contain any number of

volumes which can belong to a single body. This does not imply that these volumes are “aware”
of each other; CUBIT has no record or history of how the volumes from a body were created
and what their spatial relationship may be. To determine this spatial relationship, some simple
feature recognition concepts have been implemented to detect proximity between geometric
entities, and to resolve any redundant entities.

Redundant geometry is not really redundant in a solid modeling sense, yet from a meshing
standpoint (in which a contiguous mesh is required between volumes) if two surfaces exist
where a single surface mesh must be generated, a redundancy must be resolved. This
requirement can be illustrated in Figure 4-20. This figure depicts an “L” block (Figure 4-20),
which could easily be meshed with a sweep operation, yet for our purposes here will be
decomposed into two volumes (Figure 4-21) to demonstrate solid model surface redundancy.

For a contiguous mesh, CUBIT requires adjacent volumes to maintain one-to-one matching
surfaces. The geometry consolidation tool in CUBIT is designed to recognize the spatial
proximity between the surfaces and force them to use one surface mesh between them. This
mesh sharing approach avoids the need to equivalence nodes and preserves mesh continuity.
After the model in Figure 4-20 is decomposed into the model in Figure 4-21, surfaces 1 and 2
meet the one-to-one requirement. They can now be consolidated and treated as a single surface
for meshing purposes. By extension, curves and vertices of adjacent volumes need to adhere to
the one-to-one requirement also.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB5

CHAPTER 4 Geometry

Assemblies which are imported from external solid modelers (e.g.,DAMCeptStation,
PRO/Engineer, ACIS Test harness) will need to be inspected to insure that the adjacent volume

Figure 4-20 Solid Model Prior to Decomposition

surface to surface and curve to curve matching requirement has been properly adhered to. Some
of these external modelers will use other internal geometry engines instead of E®RS/
Engineer does not run on Acﬁ)s when using geometry which was created in PRO/Engineer,

it is critical to set the accuracy within PRO/Engineer to the highest level possible. The standard
level of accuracy within ACIS is much higher than that of PRO/Engineer f16s. 103).

CUBIT relies on geometric reasoning to identify matching surfaces and curves, and this
technique is sensitive to the accuracy setting of the model being processed. Since Aries
ConceptStation is based on AE\St does not suffer from accuracy problems due to varying

data formats and is probably the most attractive commercial modeler to use for creating
geometry outside of CUBIT.

General Geometry Consolidation

When a model fully meets the one-to-one topology requirement, it is ready for full geometry
consolidation of redundant geometric entities. TWerge All command searches first for
matching surfaces, then for matching curves, and finally for matching vertices between adjacent
volumes in the current CUBIT model. When a match is found, the consolidator merges the two

Figure 4-21 Solid Model After Decomposition

86 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 4 Geometry

matching entities inside the CUBIT database and reconnects all the affected neighboring entities
(such as now disconnected curves and surfaces) with the appropriate replacement entity. It is
critical to complete geometry consolidation before any meshing of the affected geometry is
initiated. If geometric entities are merged subsequent to meshing operations, some of the
associated mesh entities may be lost. When using the GUI, selectinGetivaetry
Consolidation menu item from th&pecial menu will display the Geometry Consolidation

| Dialog shown in Figure 4-22. This dialog contain&@ometry Consolidate option menu
which is used to describe the type of consolidation to be perform&tl.iff chosen from this
option menu, general geometry consolidation is performed whehpihlg button is pushed.
General geometry consolidation is performed with the following command from the command
line interface:

Merge All

Selective Geometry Consolidation

When analyses may require certain redundant geometric entities (such as slide lines requiring
redundant curves), a more selective mode of geometry consolidation is available. Selective
geometry consolidation can be initiated between any two user-specified surfaces, curves, or
vertices. The consolidation process will be limited to the specified entities and their affected
neighbor entities. The command syntax for selective geometry consolidation is as fallows:
Surfaces , All Curves , Surface , andCurve . Below this are two text fields which are used to
select specific geometric entities to be merg&uiface or Curve are selected in the option
menu. The ID of the desired geometric entities can either be typed into the text fields, or the user
can click on the arrows to the right of the text field to enable picking of the geometric entities.
At this time, click theApply button to execute the geometry consolidation process or click the
Cancel button to exit from the dialog without executing any commands

Merge All Curves

Merge All Surfaces

Merge Curve <int_curve_id> With <int_curve_id>
Merge Surface <int_surface_id> With <int_surface_id>

Merge Vertex <int_vertex_id> With <int_vertex_id>.

Geome Consolidate:
try Surface o | Al
Only Surfaces
Geometry 1D #1 w Only Curves
B surface
Geometry ID #2 w rve
P eton
APPLY I Fick CANCEL

Figure 4-22 Geometry Consolidation Dialog Box

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB7

CHAPTER 4 Geometry

v Geometry Attributes

Each geometry entity has attributes which determine things like what color that entity is drawn
in, and which meshing scheme shall be used to mesh that entity. This section describes geometry
attributes which are not described elsewhere in this manual.

Entity Names

Geometry entities are assigned integer identification numbers in CUBIT in ascending order,
starting with the number one. These numbers are not persistent; that is, each new entity created
receives a unique id. However, geometry entities can be assigned names, and these names can
be propagated explicitly by the user. The following commands assign names to geometry
entities in CUBIT:

{Group | Body | Volume | Lump | Surface | Curve | Vertex}
Name ‘<entity _name>’

Geometry entities are given default names when they are first created. The default names consist
of the names for the corresponding geometry entities (body, volume, surface, curve, or vertex),
followed by the id number for that entity. So, for example, curve number 21 would have a
default name of ‘curve21’. The name for each geometry entity appears in the outputisif the
command.

Geometry entities can be identified either by the entity type followed by an identification
number or by a uniqgue name. A geometry entity name can be used anywhere that a entity type
and id may be used. For example, if surface 3 is named CHAFER, the command ‘mesh
CHAFER'’ has the same result as the command “mesh surface 3'.

Geometry entities may have multiple names, but a name may only refer to a single entity. If the
geometry is read from an ACIS sat file which has the attriladtiels-gtc-name 1 the name of

the owning entity will be set to that name. In a merge operation, the names of the deleted entity
will be appended to the names of the surviving entity. The commands

label {body|volume|surface|curve|vertex} {name|id|on|off}
label geometry {namelid|on|off}

label {name|id|on|off}

Control the type of labels displayed for an entitpdine is specified, the entities name will be
used in the display; ifd or on are specified, the entities id number will be displayed. The
second and third forms of the command specify the labeling format for all geometry entities
with a single command. The name of an entity can be set using the command

name {group|body|volume|surface|curve|vertex} <id> “entity_name’

A list of all names currently assigned and their corresponding entity type and id (optionally
filtered by entity type) can be obtained with the command

list names [{group|body|volume|surface|curve|vertex|all}]

J1. The attribute used to specify the names in the ACIS sat file will probably change in the near future.

88 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Chapter 5. Mesh Generation '

v Mesh Definition...89

v Mesh Attributes...90

v Curve Meshing...95

v Surface Meshing...98
v Volume Meshing...107
v Mesh Duplication...114
v Mesh Editing...115

The methods used to generate a mesh using existing geometry are discussid in
this chapter. The definitions used to describe the process are first presentgd,
followed by descriptions of curve, surface, and volume meshing techniques. The
chapter concludes with a description of the mesh editing capabilities.

v Mesh Definition

The mesh consists of entities similar in hierarchy to the geometry described in the previous
chapter. The mesh entities includedes(locations in space)dges(bar elements)faces
(quadrilateral or shell elements), atuicks (hexahedral elements). Each mesh entity is
associated with a geometry entity which owns it. This associativity allows the user to mesh,
display, color, and attach attributes to the mesh through the geometry. For example, setting a
mesh attribute on a surface affects all mesh entities owned by that surface.

Mesh Hierarchy

Mesh hierarchy refers to the manner in which mesh entities are connected within the mesh.
Once a mesh is formed, the mesh entities define a discretized version of the geometry. The nodes
required by higher-order elements are generated subsequent to the initial discretization;
however, they are generated in the correct position based on the underlying geometry.

Node

A node is a single point in space. A node at a vertex is owned by that geometric vertex, a node
on a curve is owned by that curve, a node on the interior of a surface is owned by that surface,
and a node in the interior of a volume is owned by that volume.

Edge

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB9

CHAPTER 5 Mesh Generation

An edge is defined by a minimum of two nodes. Additional nodes may exist on the edges of
higher-order elements. An edge on a curve is owned by that curve, an edge in the interior of a
surface is owned by that surface, and an edge in the interior of a volume is owned by that
volume.

Face

A face is defined by four connected edges. A face on a surface is owned by that surface, a face
in the interior of a volume is owned by that volume.

Brick

A brick is a hexahedral element defined by six connected faces. A brick is owned by the
enclosing volume.

Mesh Generation

The mesh for any given geometry is generated hierarchically. For example, if the user issues a
command to mesh a volume, first any unmeshed vertices are meshed with nodes. Next, any
unmeshed curves are meshed, followed by the meshing of unmeshed surfaces. Finally the mesh
within the volume is generated. Vertex meshing is of course trivial and thus the user is given no
control over this process. However, curve, surface, and volume meshing can be directly
controlled by the user. Tleeheme command specifies the meshing algorithm which will be

used in meshing each of these geometric entities and the block command specifies the type of
elements which will be generated by the meshing algorithm.

v Mesh Attributes

Each geometric entity has mesh attributes which specify information such as meshing scheme,
discretization density, discretization distribution (equal or biased), and element type. Unless
otherwise specified by the user, the default meshing attributes listed in Table 5-1 will be used.:

Table 5-1Default Meshing Attributes

Default Attributes
Geometric
Entity Scheme Element Type Intervals
Curve Equal 2-node Bar 1
Surface Map 4-node Quadrilateral —
Volume Map 8-node Hexahedron —

Meshing Schemes

The mesh scheme attribute specifies the meshing algorithm that will be used to generate the
mesh on each geometric entity. Note that the meshing scheme can be specified independently
for curves, surfaces, and volumes; however, the meshing schemes for all surfaces on a volume
must be compatible with the meshing scheme specified for that volume. For example, the

Project, Translate, and Rotate volume meshing schemes require that some of the volume

90 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

surfaces be meshed using the Mapping scheme. The currently supported meshing schemes are

listed in Table 5-2.

Table 5-2Valid Meshing Schemes for Curves, Surfaces, and Volumes

Scheme

Description

Curve Meshing Schemes

Equal

linear distribution of nodes along a curve based on arc length of the curve (default)

Biased

the distribution of nodes along a curve by biasing the nodal positions toward one of the
curve ends given a growth factor

Surface Meshing Schemes

Map standard surface mapping transformation [7] (default)

SubMap pseudo geometry decomposition of surfaces to produce block characteristic meshes

TriMap generate triangular elements at sharp corners or specified vertices and mesh the remain-
ing surface using the standard mapping transformations

Pave advancing front algorithm for general surfaces including those with holes [1]

TriPave generate triangular elements at sharp corners or specified vertices and mesh the remain-
ing surface using the paving algorithm

Triangle meshing primitive for three-sided regions

Volume Meshing Schemes

Map standard volumetric mapping transformations [7] (default)
Project 2&1/2D Sweeping Algorithm—general purpose

Translate 2&1/2D Sweeping Algorithm—along a vector

Rotate 2&1/2D Sweeping Algorithm—about a central axis

Plaster Research algorithm for automatic hexahedral volume meshing
Weave Research algorithm for automatic hexahedral volume meshing

Interval Specification

Interval settings control the discretization density of the generated mesh. The number of
intervals, or discretizations, can be set on a body, volume, surface, or curve. A related setting,
the interval size, specifies tlhength of element edges on a curve, rather than the number of
intervals. An advantage of the interval size option is that consistent element sizes can be
specified throughout the mesh.

Element Types

CUBIT supports several element types, including bars, beams, quadrilaterals, shells, and
hexahedrons. Two- and three-node bar and beam elements; four-, eight-, and nine-node
guadrilateral and shell elements; and eight-, twenty-, and twenty-seven node hexahedral
elements are available. Multiple element types can be used in a single CUBIT modbckhe

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB1

CHAPTER 5 Mesh Generation

commands are used to set element types. These are described in “Element Block Specification”
on page 124. The local element node numbering is as specified in the Exodus Il specification
and shown in Figure 5-1..

[Truss, Beam, Shell (2D) Quadrilateral, Shell (3D) Hexahedral

g 3
1) % 8 9 6

1 3 >

| Figure 5-1 Local Node Numbering for CUBIT Element Types
Note: The type of elements to be generated on a geometric entity must be specified prior to
meshing the geometric entity unless the defaults listed in Table 5-1 are desired.

v Surface Vertex Types

Often meshing algorithms, in particular algorithms based on the mapping process, must classify
the vertices of a surface or volume to produce a high quality mesh. For example, a surface
mapping algorithm must identify the four vertices of the surface that best represent the surface
as a rectangle. The submapping, triangle primitive, trimap, and tripave meshing schemes have
similar vertex identification needs. Although the surface vertex type can usually be assigned
automatically, there are sometimes ambiguous cases or special cases in which the user needs to
manually specify the classification of a particular vertex. The command

Surface <surface_id> Vertex <vertex_id> Type {end|side|corner|reversal}
Surface <surface_id> Vertex <vertex_id> Type {triangle|notriangle}

is used to manually specify the classification of a particular surface vertex. Note that a vertex
may be connected to several surfaces and its classification can be different for each of those
surfaces. Figure 5-2 illustrates the vertex angle types. Note that one element will be inserted at
an end vertex, two elements at a side vertex, three elements at a corner vertex, and 4 elements
at a reversal vertex.

Note: The Surface Vertex Type command does not need to be given in order to mesh a
surface, however in some cases, it can improve the quality of the generated mesh.

v Automated Interval Assignment

Appropriate interval assignment is critical to produce high quality meshes using the map,
submap, and triangle meshing schemes. When the scheme designation for a shitége is
Submap,or Triangle, or the scheme designation for a volumeMap, Submap, Project

92 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

®
CORNER
(~270 deg.)
END
(~90 deg.
REVERSAL
(~360 deg.)

»

/ \ SIDE

\
/ I\ \ (~180 deg.)
LU

Figure 5-2 Illustration of Angle Types

Translate or Rotateautomated interval assignment tasks are performed prior to meshing the
surface or volume. To perform automated interval assignment tasks on a group of surfaces or on
a group of volumes the following commands are appropriate:

surface <range> match intervals
surface <list of surfaces> match intervals
volume <range> match intervals

TheMap, Submap, Project, Translater Rotatemeshing algorithms automatically execute the
automated interval assignment algorithm and do not require explicitly issuing the match
intervals command unless it is desired to match intervals on a group of surfaces or group of
volumes simultaneously. Both the volume meshing commands and the manual (match intervals)
command formulate a list of surfaces that are to have automated interval assignment tasks
performed (based on meshing scheme). The list of surfaces is then sent to the automated tool
which determines dependencies between intervals on curves and assigns compatible intervals
according to the meshing scheme.

The automated interval assignment algorithm calculates a solution as close a possible to the
initial specified intervals settings, while satisfying dependencies and compatibility constraints.
When the actualumberof intervals is specifically set (curve by curve) by the user, the intervals

are designated as “hard set” and are not adjusted. When the isigaial specified, it is
assumed that the user is specifying an approximate number of intervals to be placed on a curve
rather than an absolute number. These are designated as “soft set” intervals and are taken as a
lower bound by the automated interval assignment algorithm. If the number of intervals on a
curve is not specified by the user it defaults to a “soft set,” one interval. Adjustments to “soft
set” curves are minimized by the automated interval assignment algorithm while satisfying
dependencies and compatibility constraints.

The automated interval assignment algorithm is designed to find one feasible solution among
the possibly infinite number of possible interval solutions. To improve the chances of desired
results, the user can specify a desired size for surfaces. This allows the automated interval

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB3

CHAPTER 5 Mesh Generation

assignment algorithm a larger degree of freedom to make needed adjustments while having an
initial desired target value to work from.

The following sections define the constraints that the automated interval assignment algorithm
follows for the Map, Submap, and Triangle meshing schemes.

Scheme Map Interval Assignment Constraints

For surfaces with mapping schemes, first the designation lfgadl rectanglé fit to the

surface is made. The mapping algorithm selects four vertices that will best transform the surface
into a logical quadrilateral. These four vertices are chosetogiedl corner$ and curves

falling between these vertices are grouped dsgcal side’ In Figure 5-3, thdogical corners
selected by the algorithm are indicated by arrows. Between these vertitmgsidaksidesare

defined (see Table 5-1).

[EEN

Logical
Corners

SurfaceA

Logical
Corners

94

Figure 5-3 SchemeMap Logical Properties

Table 5-1Listing of logical sides

Logical Side Curve Groups
Side 1 Curve 1
Side 2 Curve 2
Side 3 Curve 3, curve 4, curve 5
Side 4 Curve 6

Interval divisions on opposite sides of the logical rectangle are matched to produce the mesh
shown in the right portion of Figure 5-3 (i.e. The number of intervals on logical side 1 is equated
to the number of intervals on logical side 3).

The process is similar for volume mapping except that a logical hexahedron is formed from
eight vertices.

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

Scheme Submap Interval Assignment Constraints

For surfaces with scheme submap, the designation ofdpiedl rectanglé is different from

Figure 5-4 SchemeSubmapLogical Properties

that of scheme map rectangle. Curves on the surface are traversed and groupegicato “
side$ by a classification of the curves position in a local “i-j” coordinate system. The local “i-

j” coordinate system is defined by a traversal of the surface boundary curves. The traversal of
the boundary and classification of curves is based on the interior surface angles at each vertex
on the surface. Example, curtenay be arbitrarily defined in the coordinate system as [+i], a

90 degree turn defines cuas [+j], another 90 degree turn defines c@ras [-i], a 270 degree

turn defines curvé as [+j] and so on. The logical sides are then defined by grouping all curves
with the same classification into one side. Therefore all [+i's] are grouped as one side and all
[+j's] are grouped as another side and so forth. These four sides then define the “logical
rectangle” that is used to formulate constraint equations (i.e. side 1 [+i's] are equated to side 3
[-'s] and side 2 [+j's] are equated to side 4 [-j's]).

v Curve Meshing

Curve meshing discretizes the curve, creating nodes and edges using the Mesh Dialog Box
shown in Figure 5-5. For curve meshing, Geometry Type must be set teurve .During

curve meshing the user controls the density of nodes/edges (or intervals) along the curve and the
relative spacing or bias of the nodes along the edge.

Node Density

The density of edges along curves is specified by setting the actual number of intervals or by
specifying a desired average interval size. When the awtualberof intervals is specifically

set (curve by curve) by the user, these intervals are designated as being “hard set” and are never
adjusted by the meshing algorithms—even when such an adjustment may produce a better
mesh. It is assumed that when the intesraérather than an actuaumberof intervals is
specified, the user is specifying an approximate number of edges to be placed on a curve rather

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB®5

CHAPTER 5 Mesh Generation

=
Tl
.

PR I S G SR I S S I

Hi

—
iy
0

m HELP CANCEL

Figure 5-5 Curve Meshing With The GUI Mesh Dialog Box

than an absolute number. The meshing algorithms in CUBIT will then make minor adjustments
to the number of intervals to insure an even number around the edge of alsunthoey also

modify intervals so the chosen algorithm will have a higher probability of success. The number
of intervals on a curve will not be adjusted after that curve has been meshed, either explicitly or

APPLY

1. Meshing a surface or volume with an all-quadrilateral or all-hexahedral mesh requires an even number of intervals around the
boundary of that surface or volume.

96 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

as the result of meshing a surface or volume containing that curve. Intervals can be changed if
the existing mesh is first deleted. The number of intervals or interval size can be explicitly set
curve by curve, or implicitly set by specifying the intervals or interval size on a surface or
volume containing that edge. For example, setting the intervals for a volume sets the intervals
on all curves in that volume. The default number of intervals is 1. Note that if higher-order
elements are being generated, the number of intervals and interval size refer to the edge of an
element, not necessarily to the spacing of nodes along that edge.

When using the GUI to specify the number of intervals,Itiverval button must be set to
Number and an integer supplied in thialue dialog box.To actually apply this interval setting
to the geometry, th&pply button must be pushed/hen setting the interval size, tinterval
button must be set ®ize and an appropriate size entered intotakie dialog boxAgain, to
actually apply this interval size to the curve, #@ply button must be pushed.

The equivalent commands to specify the number of intervals in the command line interface are:
{curve|surface|volume|body} <range> interval <intervals>

whererange may be a single integer or a range of integers. Interval size may be specified in the
command line interface using similar commands:

{curve|surface|volume|body} <range> size <interval_size>

Relative Element Edge Lengths

The relative length of element edges along a curve is specified using the curve scheme. Two
curve schemes are currently supporegplial andbias . Theequal scheme generates elements

with equal length edges along the curve. Blas scheme requires the specification difias

factor which designates a geometric progression of element edge lengths along the edge. For
example, a bias factor of 0.9 will make (as much as possible) each edge along the curve 0.9 times
the length of the previous edge, starting at the first veride default bias factor is 1.0.

When using the GUI to specify the scheme, eitherEtpeal or Bias radio button must be
chosen. The curve scheme Map is equivalent to eqighdfis chosen, a bias factor is supplied

in the Growth Factor dialog box. To actually apply this scheme setting to the geometry, the
Apply button must be pushed. The command used to specify the curve scheme in the command
line interface is:

curve <range> scheme {equal | bias} factor <factor>

Thefactor must be provided if using the bias scheme. To reverse the bias direction of a curve
in the GUI, use thRev. Bias (reverse bias) button on the curve meshing dialog.The command
used to reverse the bias in the command line interface is:

curve <range> reversebias

Reversing the curve bias using this command is equivalent to setting a bias factor equal to the
inverse of the original bias factor.

Sizing Function-Based Node Placement

The ability to specify the number and location of nodes based on a general field function is also
available in CUBIT. With this capability the node locations along a curve can be determined by
some field variable (e.g. an error measure). This provides a means of using CUBIT in adaptive

1. Thefirst vertex of a curve can be determined withigheurve <id> command.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB7

CHAPTER 5 Mesh Generation

analyses. To use this capability, a sizing function must have been read in and associated to the
geometry (see “Adaptive Surface Meshing” on page 101 for more information on this process).
After a sizing function is made available, the following scheme will mesh the curve adaptively:

curve <range> scheme stride

Meshing the Curve

Once the appropriate interval and scheme settings have been made, the curve can be meshed. If
using the GUI, thdMesh Now button is pushed to mesh the curve.

on the geometry and used when Miesh Now button is pushed

& Note: TheApply button must be pushed before the settings shown in the dialog are stored

If using the command interface, the appropriate command is:
mesh curve <range>

The resulting mesh will be drawn on the screen in the mesh color designated for the curve.
Figure 5-6 shows the result of meshing two edges with equal and bias schemes.

Equal Biased

Figure 5-6 Equal and biased curve meshing

v Surface Meshing

Surface meshing discretizes a surface into nodes, edges, and faces. When meshing a surface, the
bounding curves of the surface are first meshed (if not already meshed). The nodes on those
curves are then used as the initial data for the surface meshing. Surface meshing algorithms
include mapping, primitives, and paving, and a technique to apply boundary layers, or rows of
aspect-controlled elements, to the surface before using the chosen algorithm.

When using the GUI, the portion of tivesh dialog, from theGenerate option shown in
Figure 5-7 is used for surface meshing. Bwometry Type must be set t&urface . The

98 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

Geometry Type: Surface _i |

Interval: Humhber — |
Value (integer) I

Scheme:

e FHan I e Cxaiey

v G Sirawrth Faokae O G

+ Pave

Hource i

o Pambar Fargnt HE

w Shgeni

o Firimyisr
e Frpmbnde

+ Triangle

Figure 5-7 Surface Meshing with the GUI Mesh Dialog

Node density and relative spacing along the curves which bound the surface can be set as
| explained in “Curve Meshing” on page 95.

Scheme Designation

The algorithm to be used for surface meshing is designated as the scheme of the surface.
Currently supported surface mesh schemesMap (mapping algorithm)Pave (paving
algorithm),Submap (mapping algorithm with geometry decompositiomMiMap (generate
triangular elements, map remainddijPave (generate triangular elements, pave remainder)
andTriangle (triangle primitive). Each of these algorithms are briefly described below. The
default scheme for a surfaceMsp.

When using the GUI, thBcheme can be set by pushing one of the highlighted radio buttons,

| Map, Pave, Submap , or Triangle . When using the command line, the scheme is set with the
command
| surface <range> scheme {map | pave | submap | triangle | trimap | tripave}
Mapping

The surface mapping capability in CUBIT is based on standard mapping transformations [7].
The transformations work well and yield high quality meshes in regions with roughly parallel
opposing sides. The surface may have any number of curves defining the sides and still produce
a nice mapped mesh. Figure 5-8a illustrates a mapped mesh on a Bezier surface using two biased
and two equal curve meshes on the region’s boundary.

Paving

Paving (see reference [1]) allows the meshing of an arbitrary three-dimensional region with
guadrilateral elements. The paver supports interior holes and arbitrary boundaries. It also allows
for easy transitions between dissimilar sizes of elements. Figure 5-8 shows the same surface

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManuaB9

CHAPTER 5 Mesh Generation

meshed the mapping (left) and paving (right) schemes using the same discretization of the
boundary curves.

us

l=ll

syl

B

T

ll’-

| II-='|
| SR e s
ccmuani

7 5
: PO
"‘ﬁ‘<“l“““‘\\\w‘

Mapped Paved

Figure 5-8 Mapped and paved surface meshing
Submapping

Submapping is a meshing tool based on the surface mapping capability discussed above. This
tool is suited for mesh generation on surfaces which can be decomposed into mappable
subsurfaces. This algorithm uses a pseudo-decomposition method to break the surface into
simple mappable regions. Submapping is not limited by the number of corners or reversals in

the geometry or by the number of edges. The submap tool, however is best suited for surfaces
that are fairly blocky. If a surface geometry does not contain corners and reversals the surface
will still be meshed. However, the mapping scheme may produce a better mesh.

An illustration of a mesh produced by the submapping algorithm is shown in Figure 5-9. The
left side of this figure shows the topology assumed by the submapping algorithm and the right
side shows the resulting mesh and the vertex classifications. An alternative interpretation of the
topology is shown in Figure 5-10..

Meshing Primitives

Several basic shapes can be meshed as primitives using an internal decomposition technique to
decompose the shape into mappable segments. The triangle primitive is currently the only
surface meshing primitive available in CUBIT.

e Triangle Primitive

Thetriangle scheme indicates that the region should be meshed as a triangle. The definition of

the triangle is general in that surfaces containing 3 natural corners can often be meshed

successfully with this algorithm. For instance, the surface of a sphere octant is handled nicely

by the triangle primitive. The algorithm requires that there be at least 6 intervals (2 per side)

specified on the curves representing the perimeter of the surface and that the sum of the intervals

on any two of the triangle’s sides be at least two greater than the number of intervals on the
| remaining side. Figure 5-11 illustrates a triangle mesh on a 3D surface.

100 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

Transformed Geometry by Side Side
Surface Vertex Type Command End \‘ '/ End
n
N v
A TR
] T
[T T
1 PR
A mRRat)
T e

Figure 5-9 Submapping Example

Transformed Geometry by End End
Surface Vertex Type Command Side g A Side

Figure 5-10 Alternate Submapping Topology Interpretation

Adaptive Surface Meshing

Adapting surface meshing in CUBIT provides smaller faces where the function value is small
and vica versa, thus allowing a the mesh on a surface to adapt to some type of sizing function.
Adaptive surface meshing is done using the paving algorithm in combination with an
appropriate sizing function. The types of sizing functions that can be used are linear, curvature,
test, and Exodus-based field function. These are each described in the following paragraphs.

The Curvature sizing function determines element size based on parametric curvature of a
surface at the current location. Two cylinders with different radii and therefore different
curvature were meshed using this sizing function; the result is shown in Figure 5-12.

The linear class of sizing functions determines element size based on a weighted average of
edge lengths for mesh edges bounding the surface being meshed. There are several variants of
this class of sizing function. Thénear function bases edge length at a location on the lengths

of edges bounding the surface weighted by their inverse distance from the current location. The
Interval function is similar to the.inear function, but uses the square of the edge length
instead. Thelnverse function computes inverse edge lengths instead of edge lengths. A
comparison of meshes computed using lthreear, Interval and Inverse adaptive sizing
functions to a normal paved mesh is shown in Figure 5-13.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl01

CHAPTER 5 Mesh Generation

Figure 5-11 Triangle primitive mesh

Figure 5-13 Illustration of No Sizing, Linear, Interval, and Inverse Sizing Functions

TheTest sizing function is a hardwired numerical function used to demonstrate the transitional
effect of sizing function-based and adaptive paving. The current function is implemented in the
RefFace::test_sizing_function method in CUBIT source code. and is a periodic function which
is repeated in 50x50 unit intervals on a surface. A mesh which was generated using a periodic
function which is repeated in 50x50 unit intervals on a surface is shown in Figure 5-15.

102 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

Figure 5-14 Test sizing function mesh.

The procedure for adaptively meshing a surface is to designate paving as the mesh scheme for
that surface, assign sizing function types, and mesh the surface. The command syntax is:

Surface < id > Scheme Pave

Surface < id > Sizing Function Type { Curvature | Linear | Interval | Inverse |
Test | Exodus}

Mesh Surface <id>

TheExodus sizing function type is discussed in the following subsection.
Sizing Function-Based Surface Meshing

The ability to specify the size of elements based on a general field function is also available in
CUBIT. With this capability the desired element size can be determined using a field variable
read from a time-dependent variable in an Exodus file. Either node-based or element-based
variables can be used; for details on how to read in Exodus information to be used with adaptive
paving, see <>. Importing a field function, associating the field function with a surface, and
normalizing that function are done in two separate steps, to allow renormalization without
having to read the mesh in again. Currently, field functions are imported from element-based
Exodusll data. Thus, a field function is a time-dependent element variable in an Exodusll file.
The mesh block containing the corresponding elements must be imported along with the field
function data. For details on the adaptive paving algorithm, see [Ref].

Exodus variable-based adaptive paving is accomplished in CUBIT in several steps:

» Surface mesh scheme set to Pave. Bounding curve mesh schemes can also optionally be set to
Stride.

» An Exodus mesh and time-dependent variable for that mesh is read into CUBIT.
» The mesh and variable data are associated to geometry.

» The Exodus variable is normalized to give localized size measures, and the surface sizing
function type is designated.

 Surface is meshed.
The assignment of surface and curve mesh schemes are discussed in [ref’s].
The following command is used to read in a field function and its associated mesh:

Import Sizing Function '<exodusll_filename>’ Block <block_id>
Variable ‘<variable_name>’ Time <time_val>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl03

CHAPTER 5 Mesh Generation

104

where<block_id> is the element block to be reatariable_name> is the Exodus time-
dependent variable name (either element-based or nodal-basedytimedval> is the

problem time at which the data is to be read. When this command is given, the nodes and
elements for that element block are read in and associated to geometry already initialized in
CUBIT (for information on associating mesh to geometry, see [ref]). Note that when a sizing
function is read in, the mesh is stored in an ExodusMesh object for the corresponding geometry,
and therefore the geometry is not considered to be meshed. Also, the geometry to which the
mesh is being associated must be in the same state as it was when that mesh was written (see
“Import Mesh” on page 119 for more details on importing meshes).

Once the field function has been read in and assigned to a surface, it can be normalized before
being used to generate a mesh. The normalization parameters are specified in the same
command that is used to specify the sizing function type for the surface. The syntax of this
command is:

Surface < id > Sizing Function Type Exodus
[Min <min_val> Max <max_val>]

If normalization parameters are specified, the field function will be normalized so that its range
falls between the minimum and maximum values input. Subsequent normalizations operate on
the normalized data and not on the original data. If an element-based variable is used for the
sizing function, each node is assigned a sizing function that is the average of variables on all
elements connected to that node. Nodal variables are used directly.

After the sizing function normalization, the surface can be meshed using the normal meshing
command

Mesh Surface <id>

For example, Figure 5-15 depicts a plastic strain metric which was generated by PRONTO-

Figure 5-15 Plastic strain metric

3D [18], a transient solid dynamics solver, and recorded into an Exodusll data file. When the
file is read back into CUBIT, the paving algorithm is driven by the function values at the original

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

node locations, resulting in an adaptively generated mesh [19]. Figure 5-16 depicts the resulting

Figure 5-16 Adaptively generated mesh

mesh from this plastic strain objective function.

Boundary Layer Tool

The Boundary Layer meshing scheme is an algorithm designed to insert rows of elements
around the boundary of a surface before meshing the interior. The aspect ratios of these elements
can be carefully controlled. This capability is specifically designed for fluid simulations
involving a boundary layer. With this tool, the total boundary layer thickness and relative
thicknesses of each of the rows can be specified.

A boundary layer is specified as a set of parameters, with a boundary layer ID. This set of
parameters is then attached to curve/surface pairs in the geometry. Thus a curve may have a row
of boundary layer elements next to it on one of the surfaces it bounds, but not on another. A
boundary layer is currently defined using a combination of four of the five possible parameters.
These parameters are shown in Figure 5-17.

Number of Layers

7 7 First Layer Depth th

/

/ </ Sublayer Depth
Total Depth

Figure 5-17 Boundary Layer Parameters

« First Layer Depth. This parameter specifies the physical depth of the first layer of elements.
This is a required parameter.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl05

CHAPTER 5 Mesh Generation

» Growth Factor. This parameter specifies the relative difference of each subsequent layer’s
depth. For instance, a factor of 1.2 makes each layer 1.2 times the preceding layer’s depth.
This is an required parameter unless the second layer depth is specified.

» Total Depth. This parameter specifies the total depth of all the boundary layers. Either the
total depth or the number of layers must be specified.

* Number of Layers. This parameter specifies the total number of layers in the boundary
layer. Either the number of layers or the total depth must be specified.

» Sublayer Depth This parameter specifies the physical depth of the sublayer of elements.
This is an optional parameter. If it is specified a sublayer of elements (not counted in the
“number of layers” parameter) is added.

When using the GUI, thBoundary Layer menu item under the Mesh menu will display the
dialog shown in Figure 5-18. THgoundary Layer ID sets the boundary layer either to be

Geometry Type: Curve _i |

surface 1D

Boundary Layer ID

subLayer Depth

First Layer Depth

Growth Factor

Total Depth

Humber of Layers

Current Selection{s):

Clear .H.III

Get All |

Enter a selection: To I

APPLY Fick | HELP | CANCEL

Figure 5-18 Boundary Layer Dialog Box

defined or attached to a curve/surface pair. Specifyingtintace ID andCurve ID sets the

106 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

curve/surface pair for the application of the boundary layer Cithrge 1D is set in the picker
window at the bottom of the dialog. If the user only wishes to define a boundary layer, and not
apply it to any particular curve/surface pair, these two parameters need not be filled in. The
SublLayer Depth , First Layer Depth , Growth Factor , Total Depth , andNumber of

Layers are the parameters that may be filled in to define a new boundary layer. These must be
supplied in the combinations described above. If the user is simply attaching an existing
boundary layer to a curve/surface pair, these parameters should not be used. Pushijslyg the
button performs the definition and/or attachment of the boundary layer to the curve/surface pair.

When using the command line, a boundary layer is set with the command

BoundaryLayer <range> First [Layer] <depth> Growth [Factor] <growth>
Total Depth <depth> [Sublayer <depth>]

BoundaryLayer <range> First [Layer] <depth> Growth [Factor] <growth>
Layers <count> [Sublayer <depth>]

Note: If the growth factor, total depth, and number of rows are specified together, then the
boundary layer definition is overspecified, and the total depth will be ignored.

The boundary layer is attached to curve/surface pairs with the command:

BoundaryLayer <layer_id> Surface <range> Curve <range>

Meshing the Surface

Once the desired scheme has been chosen, and any boundary layers for the surface defined and
attached, the surface can be meshed. If the user wishes to receive a different element type than
the default (four node quads) for surface meshing, this specification needs to be set prior to
creating any surface meshes. If using the GUIMBsh Now button on theviesh Control

dialog box shown in Figure 5-3 is pushed to mesh the surface(s).

on the geometry and used when Mesh Now button is pushed.

& Note: TheApply button must be pushed before the settings shown in the dialog are stored

If using the command interface, the appropriate command is:
mesh surface <range>

The resulting mesh will be drawn on the screen in the mesh color designated for the surface.

v Volume Meshing

Volume meshing discretizes the volume into nodes, edges, faces, and hexahedral elements.
When meshing a volume, the bounding surfaces of the volume are first meshed (if not already
meshed). Available volume meshing algorithmsraepping, project, translate, rotate,

plaster, and whisker weaving (plaster and whisker weaving are currently under
development and as such are not recommended for production use). When using the GUI, the
Mesh Control opOtion of th®lesh menu button will produce the dialog box shown in Figure
5-19, which wherGeometry Type is set tovolume can be used to control volume meshing.
Node density and relative spacing along the curves which bound the surfaces of the volume can
be set as explained in “Curve Meshing” on page 66.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl07

CHAPTER 5 Mesh Generation

108

Geometry Type: Volume i |

Interval: Humber i |
Value {integer) I

Scheme:

o e I o LEEiEY

o Hegtad Growth facter O Bl

~ Map

Source ID
wr Pave \

- Plaster Target ID w,

- Rotate

-~ Translate

~ iriangie

Figure 5-19 Volume Meshing with the GUI Mesh Dialog

Scheme Designation

The algorithm to be used for volume meshing is designated as the scheme of the volume.
Currently, valid schemes are:

Map Create mesh using mapping transformations.
Project Create mesh by projecting the mesh from one surface to another.

Translate Create mesh by translating the mesh from a source surface along the vector from
the source surface to the target surface.

Rotate Create mesh by rotating about an axis from the source surface to the target surface.
Plaster Fill the volume in a free meshing inward approach—currently being researched.

Weave Attempt to generate whisker weaving sheets to fill the volume—currently being
researched.

Each of these algorithms are briefly described below. The default scheme for a vdllape is
When using the GUI, thBcheme can be set by pushing one of the highlighted radio buttons,
Map, Project , Translate , Rotate, Plaster, or Weave. When using the command line, the
scheme is set with the commands

volume <range> scheme {map | weave | plaster}

volume <range> scheme {project | translate | rotate} Source <id> Target <id>

Mapping

The volume mapping capability in CUBIT is based on the standard mapping transformations [7]
discussed in the surface meshing section. Volume mapping is designed to work on volumes that
are in some sense a logical cube (they have 6 logical surfaces and 8 logical vertices). There may

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

be more or less actual surfaces, as long as the logical surfaces can be determined. For example
the union of two blocks shown in Figure 5-20 contains 8 surfaces, but it is easy to see that 4 side

Figure 5-20 Volume Mapping of an 8-Surfaced Volume.

surfaces can be logically combined to form 2 surfaces of the logical cube and mapping can be
performed successfully. On the other hand, the quarter cylinder shown in Figure 5-21 has only

Figure 5-21 Volume Mapping of a 5-Surfaced Volume

5 surfaces. However, the cylindrical surface can be logically dissected to form 2 of the logical
surfaces, and this volume can also be meshed successfully. The volume mapper in CUBIT
needs no input from the user to determine which of the surfaces need logical dissection and/or
combination. The surface mesh, as described below, dictates these choices.

The pattern of the surface mesh will dictate whether a volume can be mapped. On any mappable
volume mesh, the surface mesh must contain only 8 trivalent nodes (nodes attached to only 3

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl09

CHAPTER 5 Mesh Generation

guadrilateral faces on the surface). All other nodes must be quadvalent (4 elements attached to
the node). These 8 trivalent nodes form the corners of the cube to be mapped. In Figure 5-22

Figure 5-22 Surface Mesh of an 8-Surfaced Volume Highlighting the Logical Edges Used
For Volume Mapping.

the surface mesh of an 8-surfaced volume is shown. The logical edges of the surface mesh are
highlighted. Notice that not all the geometric edges are used as logical edges for meshing. These
logical edges meet at the trivalent nodes of the surface mesh (the corners). This combination of
8 trivalent and the rest quadvalent nodes on the surface can only produce a logical cube. Thus,
the user need only insure that the surface mesh has the right characteristics for volume mapping
to succeed.

Sweeping (Project, Translate, and Rotate)

The CUBIT volume sweeping capability is divided into three algorithms (Project, Translate, and
Rotate) which each generate a volume mesh by extruding hexahedrons from a previously
meshed source surface to a topologically similar target surface. Topologically similar includes
relationships such as a rectangular surface being extruded into an elliptical surface as long as
the two surfaces contain the same number of boundaries of.loops

The geometric requirements for a sweeping operation are that the volume be “2 and 1/2 D,” or

extrudable. This requirement is typically satisfied if the surfaces linking the source surface and

target surface can be meshed with compatible mapping transformations (See “Mapping” on

page 99.), where the “compatible” qualifier means that the edges linking the source surface to

the target surface have the same number of intervals. The source surface may be meshed using
| any of the meshing methods described in “Surface Meshing” on page 98. The smoothed

1. The number of loops on a surface refers to the number of boundaries it has. A surface always has at least one boundary, the set
of curves which bound it externally. Some surfaces also have internal boundaries, or loops, in the form of holes.

110 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

topology of the source surface mesh will be reproduced on the target surface unless the target
surface is already meshed. In this case, the target surface mesh must have the same topology and
connectivity as the source target mesh. It is much more efficient to let the sweeping meshing
algorithms mesh the target source face if at all possible.

The procedure for the sweeping volume mesh generation algorithms is as follows: first the
attributes (interval settings, element type, etc.) of the volume should be set, and then the surfaces
which will act as the source and target must be selected. When the command to mesh the volume
is executed, the sweeper will mesh the source surface, and then the linking surfaces. The
sweeping algorithms will then project a layer at a time, progressing through the unmeshed
volume. The difference between the three sweeping algorithms is the method used to project the
nodes and elements from one layer to the next. These details will be discussed in the following
sections.

* Project

Theproject sweeping algorithm is a modified version of the plastering hex element projection.
The sweep path can be completely general. The nature of the swept region can also be general
in that it can contain draft angles and non-symmetric transformations. Figure 5-23 displays
swept meshes involving mapped and paved source surfaces. The project algorithm can also

Source
Surface

Source
Surface

Target
Surface

Surface

A B
Figure 5-23 Project Volume Meshing

handle multiple surfaces linking the source surface and the target surfaces. An example of this
is shown in Figure 5-24. Note that for the multiple surface meshing case, the interval
requirement is that the total number of intervals along each multiple edge path from the source
surface to the target surface must be the same for each path.

The project algorithm proceeds by determining a “projection node” for each node on the
boundary of the current “layer.” A node’s projection node is the node directly “above” (in the
sense of up being closer to the target surface than the source surface). An approximate planar
surface is then generated through these nodes. For each node interior to the boundary of the

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manualll

CHAPTER 5 Mesh Generation

Figure 5-24 Multiple Surface Project Volume Meshing

volume, an average “projection vector” is calculated by determining which neighboring nodes
have existing projection nodes and averaging the vector from these nodes to their projection
nodes. The interior nodes are then calculated by projecting from the interior nodes along the
average projection vector to the approximate planar surface calculated earlier. The interior
nodes are ordered in a manner to maximize the number of neighboring nodes with existing
projection nodes. This process is repeated for each interior node on the current layer. After all
projection nodes have been created, a new layer of hexes is created and smoothed. The process
then repeats for the next layer.

If the approximate planar surface does not closely match the surface defined by the boundary
projection nodes, the interior projection nodes are created simply by projecting along the
average projection vector; the intersection with the planar surface is not calculated.

The project algorithm is very general in that it can create a mesh on almost any extrudable
volume; however, this generality has some disadvantages in that it does not use any global
information about the actual generation of the volume. It simply projects a layer at a time in
moving from the source surface to the target surface. Because of this, and the smoothing that is
done after each layer is created, features that are present in the source surface mesh sometimes
tend to get smoothed out or smeared by the time the mesh reaches the target surface mesh. The
project algorithm is also slower and requires more memory than the translate and rotate
algorithms since it must calculate a local projection for each node and maintain the information
required by the smoothing algorithms.

e Translate

Thetranslate sweeping algorithm is a more restricted version optlogect algorithm. It is

used when the source surface and target surface have exactly the same geometry and are parallel.
If it is possible to translate the source surface along a vector and have it completely overlay the
target surface, this algorithm can be used.

Thetranslate algorithm proceeds by calculating the vector from the source surface to the target
surface. The thickness of each layer is then calculated as the distance from a boundary node on

112 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

that layer to that node’s projection node. This distance is the same for each node on the current
layer since the source surface and the target surface (and therefore, each layer) are parallel. Each
interior node is then projected that thickness along the vector. This process is repeated for each
layer in the volume. No smoothing is performed on the generated volume mesh.

* Rotate

Therotate sweeping algorithm is also a restricted version optigect algorithm. It is used

when the source surface and target surface are exactly the same and are connected by a conic or
toroidal surface. If it is possible to rotate the source surface about a single axis and have it
completely overlay the target surface, this algorithm can be used. This algorithm cannot be used

if the rotation axis contacts either the source surface or the target surface, that is, there must be
a hole through the center of the generated mesh.

Therotate algorithm proceeds by calculating the axis of rotation from the source surface to the
target surface. The thickness of each layer is calculated from the amount of rotation from a
boundary node on that layer to that node’s projection node. This rotational distance is the same
for each node on the current layer. This process is repeated for each layer in the volume. No
smoothing is performed on the generated volume mesh.

Plastering

Plastering uses the discretized surface and begins to lay elements into the interior of the volume.
This continues until the volume fills, with adjustments made to the exterior surface mesh as
deemed necessary. This algorithm is currently under development and not suggested for use
although it may be tested if desired. It should currently perform well for blocky structures where
the surface mesh will form a valid boundary for an interior hex mesh. Some examples of these
structures are shown in Figure 5-25. These structures allow very straightforward hex element

AN
—~—

'v‘.
LD
S—S———

<\
~

[77])] []]
[/)]]]

Figure 5-25 Plastering Examples

connectivity and do not contain any irregular nodes (nodes that are shared by other than four
element edges in a given layer).

Whisker Weaving

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuill3

CHAPTER 5 Mesh Generation

Whisker weaving is based on information contained in the Spatial Twist Continuum (STC),
which is the geometric dual of an all-hexahedral mesh. Whisker weaving begins with a three
dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral
element connectivity from the boundary inward. The result of the whisker weaving algorithm is
a complete representation of hex mesh connectivity. This connectivity is then converted into an
actual mesh and smoothed to fit the volume.

The whisker weaving algorithm is a relatively new meshing technique, and as such is capable
of meshing only simple volumes at this time. Examples of meshes generated using the whisker
weaving algorithm are shown in Figure 5-26.

| Figure 5-26 Whisker Weaving meshes.

Meshing the Volume

Once the desired scheme has been chosen, the volume can be meshed. If the user wishes to
receive a different element type than the default (eight-node hexahedrons) for volume meshing,
this specification needs to be set prior to creating any volume meshes. If using the GUI, the
Mesh Now button is pushed to mesh the curve(s).

Note: TheApply button must be pushed before the settings shown in the dialog are stored
on the geometry and used when Mesh Now button is pushed.

If using the command interface, the appropriate command is:
mesh volume <range> | All
mesh body <range> | All

The resulting mesh will be drawn on the screen in the mesh color designated for the volume.

v Mesh Duplication

If the geometry to be meshed was generated using the body copy command explained in “Copy
Bodies” on page 52, then the mesh from the original geometry can be copied directly to the new
geometry using the command

copy mesh {volume|surface} <id1> onto {volume|surface} <id2>

This functionality is not yet available in the GUI version of CUBIT.

114 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

v Mesh Editing

A limited capability to modify portions of a mesh is provided to allow the user to make
judgements about the level of smoothing required for volumetric meshes. Since the models to
be meshed vary widely, and since CUBIT does not contain a sophisticated geometry recognizer,
CUBIT is unable to make decisions regarding the type of smoothing algorithm to employ.
Certain algorithms work well for classes of problems and fail for others. There seems to be no
perfect smoothing algorithm, therefore the decision of which type of smoother to use is left to
the user.

Smoothing
Surface

Surface smoothing algorithms currently consist of a variety of equipotential stencils,length-
weighted laplacian, and centroid area pull. The nature of equipotential smoothers is one of
weight equalization between adjacent nodes. For a generic, area, or Jacobian-based weighted
smooth, this is roughly similar to equalizing areas between adjacent elements. The techniques
behave well for regular or irregular grids on non-periodic surfaces, but are not yet released for
periodic surfaces such as cylinders, spheres, (some) nurbs, and tori.

The Laplacian smoothing approach calculates an average element edge length around the mesh
node being smoothed to weight the magnitude of the allowed node movement [8]. Therefore
this smoother is highly sensitive to element edge lengths and tends to average these lengths to
form better shaped elements. However, similar to the mapping transformations, the length-
weighted Laplacian formulation has difficulty with highly concave redions

The Centroid Area Pull smoothing approach attempts to create elements of equal area by. Each
node is pulled toward the centroids of adjacent elements by forces proportional to the respective
element areas [8].

Smoothing is implemented like the meshing, where the scheme is set first and the action
performed later, with separate commands. The command line syntax for setting the smoothing
scheme for a surface is as follows:

Surface <range> Smooth Scheme Equipotential [Fixed]
[Weight {Jacobian | Area | Inverse [Area]}

Surface <range> Smooth Scheme Laplacian [Fixed]
Surface <range> Smooth Scheme Centroid Area Pull[Fixed]

If the Weight keyword is not specified, @eneric weighting is used by default. Tléxed

keyword forces the nodes lying on the bounding curves of a surface to remain stationary instead
of “floating” along the equation of the curve until all nodes have converged. Note that this
restriction limits the amount of impact the smoothing operation can have on the surface mesh.

To smooth a surface based on the previously set scheme, the following command is used:
Smooth Surface <range> [global]

If no scheme has been set, the Equipotential scheme is used by default. The optional global
identifier is only valid with the laplacian and centroid area pull smoothing schemes. If entered,
all surfaces specified by range will be smoothed at one time. If global is not specified, the
surface will be smoothed sequentially.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuall5

CHAPTER 5 Mesh Generation

Volume

Two volume smoothing algorithms are currently available in CUBIT. The first type of user
controlled smoother is the length-weighted Laplacian. This smoothing approach calculates an
average element edge length around the mesh node being smoothed to weight the magnitude of
the allowed node movement [8]. Therefore this smoother is highly sensitive to element edge
lengths and tends to average these lengths to form better shaped elements. However, similar to
the mapping transformations, the length-weighted Laplacian formulation has difficulty with
highly concave regioffs

The second type of smoother is a variation of the equipotential [8] algorithm that has been
extended to manage non-regular grids [9]. This method tends to equalize element volumes as it
adjusts nodal locations. The advantage of the equipotential method is its tendency to “pull in”
badly shaped meshes. This capability is not without cost: the equipotential method may take
longer to converge or may be divergent. To impose an equipotential smooth on a volume, each
element must be smoothed in every iteration—a typically expensive computation. While a
Laplacian method can complete smoothing operations with only local nodal calculations, the
equipotential method requires complete domain information to operate.

Smoothing is implemented like the meshing, where the scheme is set first and the action
performed later, with separate commands. The command line syntax for setting the smoothing
scheme for a volume is as follows:

Volume <range> Smooth Scheme
{Laplacian | Equipotential} [Fixed]

The Fixed keyword force the nodes lying on the bounding surfaces of a volume to remain
stationary instead of “floating” along the equation of the surface until all nodes have converged.
Note that this restriction limits the amount of impact the smoothing operation can have on the
volume mesh.

To smooth a volume based on the previously set scheme, the following command is used:
Smooth Volume <range>
If no scheme has been set, Bguipotential scheme is used by default.

While future objectives include investigation into weighting schemes to explicitly control mesh
flow according to user-defined field or element functions, a simple hex weighting function exists
which demonstrates the potential of the equipotential smoothers. This command applies a user
specified weight to a group of hex elements, in this case, the elements which contain a mesh face
which belongs to a specified geometric surface. By adjusting the weight and running the
smoother, one can expand or compact the elements being weighted. This capability may be used
eventually to control adaptive hex element meshing, and to assist the free-form three-
dimensional volumetric algorithms in their efforts to maintain element quality. The command
syntax for applying the hex element weights is as follows:

Weight Hexes Surface <range> <weight>

Accessing Smooth Functions in the GUI

The Smooth menu item is located in thdesh menu. The SmoothDialog for both surface
smoothing and volume smoothing is shown in Figure 5-27. Each radio button corresponds to a
smoothing command described in the previous two sections. The bottom portion of the
SmoothDialog is a standard picker configuration described in “Picker Window” on page 59. The

116 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

geometry type, eitheéBurface orVolume, is specified in th&eometry Type option menu,
and specific entities of this type are selected in the PickerWindow. After selecting the
Smoothing Method , click Apply to perform the smoothing o€ancel to abort the

smoothing.

Geometry Type: ml Geometry Type: wl
Smoothing Method: Smoothing Method:

~ Lopdanine +~ Laplacian

+ Equipotential Jacobian ~ Equipotential Jacobian

~ Equipotential Jacobian Fixed + Equipotential Jacobian Fxed

~ Equipotential Area ~ Ergdnoiantisg fres

~ Equipotential Generic ~ Bgdnoiontisd Gonoris

~ Equipotential Generic FiZed ~ Bogdnoiontis Gonerds Plapd

~ Equipotential Inverse Area ~ Bogdnoiontiad hooena Spran

Figure 5-27 Smooth Surface and Smooth Volume Dialog Boxes

Node Repositioning

The user can reposition nodes appearing in the same nodeset ushkigdt#feet Move
command. Moves can be specified using either a relative displacement or an absolute position.
The command to reposition nodes in a nodeset is:

nodeset <id> move <delta_x> <deleta_y> <deleta_z>
nodeset <id> move to <x_position> <y_position> <z_position>

The first form of the command specifies a relative movement of the nodes by the specified
distances and the second form of the command specifies absolute movement to the specified
position.

Individual nodes can be repositioned using the Node Move comand. Moves are specified as
relative displacements. The command syntax is:

Node <range> Move <delta x> <deleta_y> <deleta_z>

Mesh Deletion

TheDelete All menu item in thélesh menu permanently removes all mesh entities from the
model and resets the mesh entity identification counters. A warning dialog will appear
requesting a confirmation of this action. The command line syntax is:

delete mesh

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuall7

CHAPTER 5

Geometry Type:

Current Selection{s):

Clear All

Get All

Enter a selection:

nPPLvI Pick | HELP | CHNCELl

Mesh Generation

Several additional commands are available through the command line version of CUBIT. Partial
delete capabilities exist for volumes, surfaces, curves, and vertices. Only the mesh which is
owned by or is dependent on the specified geometry will be removed.

The routines are intelligent in the respect that if a mesh delete command is executed for a
surface, curve, or vertex which belongs to one (or more) fully meshed volumes, CUBIT will
delete all mesh entities which must be deleted as a result: for example, if one node on the vertex
is deleted, then the mesh which lies on the connected curves to that vertex is incomplete and will
be deleted, and then the surface mesh which relied on the curves must will also be deleted, and
finally the interior hex elements within the volume. The command syntax for these commands
is as follows:

delete mesh volume <range>
delete mesh surface <range>
delete mesh curve <range>
delete mesh vertex <range>

In the GUI version, selecting th2elete option from theMesh menu will display the Mesh
Delete dialog box shown in Figure 5-28. This dialog box contains the standard picker window.
After the correct geometry type is specified (Vertex, Curve, Surface, or Volume), and the entity
IDs are selected, either by picking or by entering the values, selecting the Apply button will
display the mesh delete warning dialog The deletion will be performed if OK is selected.

Vertex ? WARMIMG: Do you really wrant to delete?

P

Figure 5-28 Mesh Delete and Mesh Delete Warning Dialog Boxes

Face Deletion

Mesh faces can be deleted individually usinglbéete Face command. This command closes
a face by merging two mesh nodes indicated in the input. The syntax for this command is:

Delete Face <face_id> Nodel <nodel_id> Node2 <node2_id>

This command is provided primarily for developers’ use, but also provides the user fine control
over surface meshes. At the present time, this command works only with faces appearing on
geometric surfaces and should be used before any hex meshing is performed on any volume
containing the face to be deleted.

118 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 5 Mesh Generation

| Import Mesh

A limited capability exists to read in a previously created mesh from an existing Exodusl| file
and associate the mesh (retaining full functionality for additional meshing or smoothing
operations which depend on the imported mesh) with matching geometry in the CUBIT model.
This command is useful for continuing a previous meshing problem at the point it was
terminated rather than regenerating the entire mesh from the beginning. The geometry which
matches the original mesh must be present in the model for the command to work.

Two methods have been implemented for associating a mesh with a geometry. The first method
is proximity-based, that is it compares node positions with those of vertices, curves, etc., to
determine the nodal associativity. This method has been known to fail when computing
ownership on periodic curves and surfaces, and may not be robust in cases where the proximity
test is not sufficiently restrictive. This method has been retained mainly for compatability with
old meshes.

The second associativity method is based on logical associativity data stored in the Exodusll
file. Each geometry entity has a corresponding nodeset which contains the nodes owned by that
entity, and nodesets are associated back to geometry entities using geometry entity names (see
“Entity Names” on page 88). (To store associativity information in the Exodusll file, the
NodeSet Associativity command must be entered before issuingBkport Genesis

command; see “Nodeset Associativity Data” on page 126.) Note that before importing a mesh
to be associated with a geometry, the geometry must be in the same state it was in when the mesh
block was written. That is, the topology must be the same, and there must be corresponding
named geometry entities for each of the entities owning mesh in the original problem. This can
be done either by executing the same geometry generation sequence, or by arriving at the
geometry using a different method and explicitly naming the geometry entities to match those

in the original problem. Only the names are used to find matching geometry entities (i.e. no
check is made to ensure that the entity types match).

The same command line syntax is used for both associativity methods. The second (logical)
method is attempted first; if the logical associativity information is not located in the Exodusl|
file, the second method is used. The command line syntax for importing a mesh into CUBIT is:

Import Mesh '<exoduslI_filename>’ Block <block_id> Volume <volume_id>

This command is also accessible in the GUI version abrthert > Mesh option under the
File menu.

v Mesh Quality

The ‘quality’ of a mesh can be assessed using the element quality functions. These functions
calculate several element shape factors which may have an affect on the accuracy of the finite
element results calculated using the element.

Background

The quadrilateral element quality metrics that are calculated are aspect ratio, skew, taper,
warpage, element area, and stretch. The calculations are based on an article by John Robinson
entitled “CRE method of element testing and Jacobian shape parameters,” Eng. Comput., 1987,
\ol. 4. An illustration of the shape parameters is shown in Figure 5-29 The warpage is calculated
as the Z deviation from the ‘best-fit' plane containing the element divided by the minimum of

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuall9

CHAPTER 5 Mesh Generation

Base line
r—— - - — — — |
| |
L |
I 1
| b |
L - _Q_ - — — 4
Aspect Ratio = a/b
r -7 - - — — — I
| / |/
/A /
/I /I
/| /|
A <

Skew = sin(A)

T1 T1
/s 7
7/ /!
/ /
Vs /
Y /!
_/
T1 T1
- - — = — — 7
y, - T2
/ /
/
L o = /T_Z

Taper=T1& T2

Figure 5-29 Illustration of Quadrilateral Shape Parameters (Quality Metrics)

‘a’ or ‘b’ from Figure 5-29. The stretch metric is calculated by dividing the length of the shortest
element edge divided by the length of the longest element diagonal.

The hexahedral element quality metrics that are calculated are aspect ratio, skew, taper, element
volume, stretch, and diagonal ratio. The calculation of these metrics is similar to that used for
the quadrialteral elements. A good illustration and discussion of the mode shapes for an eight-
node hexahedral element can be found in Chapter 3 of L. M. Taylor and D. P. Flanagan,
“PRONTO 3D: A Three-Dimensional Transient Solid Dynamics Program,” SAND87-1912.

Command Syntax

The commands to access the quality metrics are:

quality <entity_list> [global]

quality <entity_list> [global] display|draw ‘metric_name’

The global identifier indicates that all specified entities are to be treated as a single entity
instead of as several distinct entities. Valid values fomtéteic_name identifier areAspect

Ratio , Skew, Taper , Element Area

Warpage (Quad Only)Stretch
below shows the typical output.

120 CUBIT Version 1.11.0 Reference Manual

, andDiagonal Ratio

(Quad Only),Element Volume (Hex Only),
(Hex Only). The example section

Document Version 4/18/96

CHAPTER 5 Mesh Generation

Command Examples
quality surf all global
-- lists quality summary for all surfaces in model. One summary

quality surf all
-- lists quality summary for all surfaces in model. One summary per entity

quality group 1
-- lists quality for the RefEntities in the group. Determines the highest common
dimension (hex/quad).

quality surf 1 surf 2 surf 9
-- lists summary for surfaces1,2, and 9

quality surf all global draw ‘Aspect Ratio’
-- Draws color-coded plot of the aspect ratios of the element faces.

Example Output

The typical summary output from the commanehlity surface 1 is shown in Table 5-1.
Figure 5-30a shows the histogram output corresponding to the above summary . The colored

Table 5-1Sample Output for ‘Quality’ Command

Surface 1 Element Metrics:

Function Name Average StdDev Minimum (id) Maximum (id)

Aspect Ratio 1.272e+00 2.336e-01 1.000e+00 (86) 2.200e+00 (433)
Skew 2.035e-01 1.790e-01 7.168e-04 (121) 7.778e-01 (280)
Taper 1.529e-01 1.048e-01 4.783e-03 (254) 6.842e-01 (70)
Warpage 0.000e+00 0.000e+00 0.000e+00 (1) 0.000e+00 (1)

Element Area 5.244e-04 5.683e-04 3.305e-05 (154) 2.371e-03 (229)
Stretch 7.467e-01 1.136e-01 2.983e-01 (433) 9.648e-01 (310)

element display resulting from the commandlity surface 1 draw ‘Skew’ is shown in
Figure 5-30b. In addition, a legend () is output to the terminal.

Table 5-1Element Quality Plot Legend

Magenta ranges from 7.168e-04 to 1.117e-01 (127 entities)
Blue ranges from 1.117e-01 to 2.227e-01 (82 entities)
Cyan ranges from 2.227e-01 to 3.338e-01 (41 entities)
Green ranges from 3.338e-01 to 4.448e-01 (35 entities)
Yellow ranges from 4.448e-01 to 5.558e-01 (20 entities)
Orange ranges from 5.558e-01 to 6.668e-01 (11 entities)
Red ranges from 6.668e-01 to 7.778e-01 (8 entities)

Limitations and Planned Enhancements:

» The legend for the color plots is only a text output that tells the range covered by each color
and the number of elements in that range.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual1

CHAPTER 5 Mesh Generation

Quality Surface 1

Aspect Ratio Taper
1.000e+00 to 2.200e+00 7.168e-04 10 7.778e-01 4.783¢-03 10 6.842¢-01

— 0 0

25 50 75 100 0 25 50 75 100 0 2 50 75

Warpage
0.000€+00 0 0,000e+00 3.305€-05 t0 2.371e-03 2.983€-01 10 9.648-01
1511— 72

0 0=

122

Quality Surface 1 Draw ‘Skew’

Figure 5-30 lllustration of Quality Metric Graphical Output

* Individual metrics can not currently be listed.

» The color quality plots change the graphics mode to polygon fill mode. The user must reset it
back if a different mode is wanted.

* The histogram plot sets the background to white so that the hardcopy will work correctly.
Need some way of resetting back.

» Recalculation of the metrics is done each time. Need some way of determining when the old
data are valid/invalid. A function exists to set this, but there are too many places that the mesh
data could be modified to rely on it being set correctly at this time. .

CUBIT Version 1.11.0 Reference Manual

Document Version 4/18/96

Bl

Chapter O: Finite Element Model '

Definition and Output
v Finite Element Model Definition...123

>

v Element Block Specification...124

v Boundary Conditions—Nodesets and Sidesets...126
v Setting the Title...127

v Exporting the Finite Element Model...127

Chapter 6 describes the techniques used to complete the definition of the firjite
element model and the commands to export the finite element mesh to an Exqdus
database file. The definitions of the basic items in an Exodus database gqre
briefly presented, followed by a description of the commands a user would
typically enter to produce a customized finite element problem description.

v Finite Element Model Definition

Sandia’s finite element analysis codes have been written to transfer mesh definition data in the
Exoduslli [6] file format. CUBIT is one code in a suite of computer codes that supports the
Exodusll format for the pre- and post-processing of finite element analyses [14]. Since CUBIT

is dedicated to mesh generation, the resulting database exported during a CUBIT session is
sometimes referred to as a Genesis database file. A Genesis file is a subset of an Exodus file
containing the problem definition only, i.e., no analysis results are included in the database.

A Genesis database consists of the following basic entity types: Element Blocks, Nodesets, and
Sidesets.

Element Blocks

Element Blocks (also referred to as simplpckg are a logical grouping @lementsll having

the same basic geometry and number of nodes. All elements within an Element Block are
required to have the same element type. Access to an Element Block is accomplished through
the use of a single integer ID known as the Block ID. Typically, Element Blocks are used by
analysis codes to associate material properties and/or body forces with a group of elements.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual”3

CHAPTER 6 Finite Element Model Definition and Output

Nodesets

Nodesets are a logical grouping médesalso accessed through a single ID known as the
Nodeset ID. Nodesets provide a means to specify load or boundary conditions on the CUBIT
model.

Sidesets

Sidesets are another mechanism by which constraints may be applied to the model. Sidesets
represent a grouping efement sideand are also referenced using an integer Sideset ID. They
are typically used in situations where a constraint must be associated with element sides to
satisfactorily represent the physics (e.g. a contact surface).

v Element Block Specification

Element blocks are the method CUBIT uses to group related sets of elements into a single entity.
Each element in an element block must have the same dimensionality, type, number of nodes,
and attributes. Element Blocks may be defined for volumes, surfaces, and curves. Multiple
volumes, surfaces, and curves can be contained in a single element block. Element blocks are
defined in the Block Identifier Dialog (Figure 6-1) which is accessed from the Block Identifier

| menu item.Thdlock ID and theGeometry Type to which this block ID is to be applied is
specified in the top section of the dialog. The entities of this geometry type are specified using
the normal picker window in the bottom section of the dialog. The center section of the dialog
is used to specify the characteristics (element type and element attributes) to be applied to this
element block. The element type desired is specified by selecting one of the radio buttons. The
elements along the top row are basic linear elements and the subsequent rows are higher-order
elements. The number following the element name denotes the number of nodes in the element.
For example, thélex27 element is a 27-noded hexahedral element with mid-side, mid-face,
and mid-volume nodes. The Shell and Bar elements require the specificatioAttfiane 1
value which defines the thickness or cross-sectional area of the element for use in the finite
element code The attribute defaults to 1.0 if not specified. The commands to perform these
functions using the command line are:

Block <block_id> {Curve | Surface | Volume} <range>
Block <block_range> Element Type <type>
Block <block_range> Attribute <value>

Where the first command definedlack_id containing the specified geometric entities, the
second command sets tBdement Type for that block and the third command sets the
Attribute for those elements.

1. Only zero or one attributes can be defined at the current time. This limitation will be removed in a future version.
The thickness and cross-section attribute values are not used internally in CUBIT, they are merely flags which are written to the
EXODUS file to be used by subsequent codes. The documentation for the code which will be reading the EXODUS file should
be consulted to determine the correct specification and use of the attribute value for the Shell and Bar elements.

124 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 6 Finite Element Model Definition and Output

are inserted as part of the meshing procedg if an Element Block’s element type

& Note: Higher order element blockaust be specified prior to meshing since additional nodes
calls for them.

Default Element Types, Block IDs, and Attributes

The following defaults will be used unless otherwise specified or modified:

Volume: The default block ID will be set to the Volume ID and 8-node hexahedral elements
will be generated.

Surface: The block ID will be set to 0 and 4-node shell elements will be generated.
Curve: The block ID will be set to 0 and 2-node bar elements will be generated.

Meshing could then be accomplished and the desired finite element model exported to the
Genesis database.

Element Block Definition Examples
Multiple Element Blocks

Multiple element blocks can and almost always are combined when generating a finite element
mesh. For example if the finite element model consists of a block which has a thin shell encasing
the volume mesh, the following block commands would be used:

Block 100 Volume 1

Block 100 Element Type Hex8

Block 200 Surface 1 To 6

Block 200 Element Type Shell4

Block 200 Attribute 0.01

Mesh Volume 1
Export Genesis ‘block.g’

Which defines two element blocks (100 and 200). Element block 100 is composed of 8-node
hexahedral elements and element block 200 is composed of 4-node shell elements on the surface
of the block. The “thickness” of the shell elements is 0.01. The finite element code which reads
the Genesis file (block.g) would refer to these blocks using the element block IDs 100 and 200.
Note that the second line and the fourth line of the example are not required since both
commands represent the default element type for the respective element blocks.

Surface Mesh Only

If a mesh containing only the surface of the block is desired, the first two lines of the example
would be omitted and thielesh Volume 1 line would be changed to, for exampiéesh
Surface 1 To 6.

Two-Dimensional Mesh

CUBIT also provides the capability of writing two-dimensional Genesis databases similar to
FASTQ. The usemustfirst assign the appropriate surfaces in the model to an element block.
Then aQuad* type element may be specified for the element block. For example

Block 1 Surfacel To 4
Block 1 Element Type Quad4

In this case, it is important for users to note that a two-dimensional Genesis database will result.
In writing a two-dimensional Genesis database, CURjiores all z-coordinate data.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual5

CHAPTER 6 Finite Element Model Definition and Output

Therefore, the user must ensure that the Element Block is assigned to a planar surface lying in
a plane parallel to the x-y plane. Currently, @aad* element types are the only supported
two-dimensional elements. Two-dimensional shell elements will be added in the near future if
required.

v Boundary Conditions—Nodesets and
Sidesets

Boundary conditions such as constraints and loads are applied to the finite element model
through nodesets and sidesets. Nodesets can be created from groups of nodes categorized by
their owning volumes, surfaces, or curves. Nodes can belong to more than one nodeset. Sidesets
can be created from groups of element sides or faces categorized by their owning surfaces or
curves. Element sides and faces can belong to more than one sideset. Nodesets and Sidesets can
be viewed individually through CUBIT by employing theaw Nodeset andDraw Sideset

commands.

Nodesets and Sidesets may be assigned to the appropriate geometric entities in the model using
the following commands in the command line:

Nodeset <nodeset_id> {Curve | Surface | Volume | Vertex} <range>
Sideset <sideset_id> {Curve | Surface} <range>

When using the GUI version of CUBIT, nodesets and sidesets are specified by accessing their
respective dialog boxes from t@®nstraints menu. The Nodesets menu item will display the
Nodeset Dialog and the Sidesets menu item will display the Sideset Dialog. The top portion of
| both of these are shown in Figure 6-2; the bottom portion is a standard picker window. The
Geometry Type option menu can be seBtmly, Volume, Surface, or Curve. The user-
specified output identification number for the nodeset or sideset is enteredNidiset ID
or Sideset ID text field. This is the number which will be used to identify this boundary
condition in the exported EXODUSII file. The geometric entities to which this boundary
condition is to be applied is then specified using the normal picking syntax.

Nodeset Associativity Data

Nodesets are also used to store geometry associativity data in the Exodusll file. This data can
be used to associate the corresponding mesh to an existing geometry in a subsequent CUBIT
session. This functionality can be used either to associate a previously-generated mesh with a
geometry (“Import Mesh” on page 119), or to associate a field function with a geometry for field
function-based meshing “Sizing Function-Based Node Placement” on page 97).

The command syntax used to control whether or not associativity data is written to the Exodusl|
files is the following:

NodeSet Associativity { on | off }

126 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER 6 Finite Element Model Definition and Output

v Setting the Title

CUBIT will automatically generate a default title for the Genesis database. The default title has
the form:

cubit(genesis_filename): date: time

The title can be changed using the command:

Title '<title_string>’

CUBIT's parser requires that strings be enclosed in single quotes, for exdimgles a
string’ .

v Exporting the Finite Element Model

A Genesis database can be output usindgettport option of theFile Menu. Only Exodus |l
format is currently supportédA file can also be output using the following command:

Export Genesis '<filename>"’

The Export Genesis command automatically createscueElement Block for every volume

that is meshed (assuming the user has not entered any Block commands overriding this default
behavior). Users can selectively control which blocks are output to the Genesis file since
Element Blocks willhot be created for any volumes that are not meshed.

1. Actually, there are two other formats provided for specialized applications. These formats are Xpatch and FRED. The
command to create these file format@iport Xpatch|FRED ‘<filename>' . If you need more information about these file
formats, contact a CUBIT developer.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference ManualR7

CHAPTER 6 Finite Element Model Definition and Output

128 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

el

Appendix A command Index '

v Command Syntax...129

v Commands...129

In this section the commands available in CUBIT are listed in alphabeticj

order. There may be more than one command available under a given commgnd
definition, since some commands can be executed singly or over a range] of
objects.

v Command Syntax

Each command will be first listed by a command heading, which will be phrased in standajd
terminology and will typically be very close to the computer syntax for the particular commanq.
Underneath the command heading, each variation of the command will be listed, to documg¢nt
commands which can be applied to single objects as well as a range of objects. At the end of
each command heading is a page number cross-reference to the location in the main document
where the command is documented.

Command listings will ask for four types of command arguments: arguments include integers
(6, 1, 3, etc., these are typically id’s), reals (1.4, 2.35, etc., typically floating point quantities
such as angles, spatial coordinates), strings (jjrome.jou, part.g, etc.), and logicals (1, 0, on, off,
etc.).

Detailed descriptions of most commands and their usage can be found within the main sections
of this document. A few of the special purpose commands are not documented elsewhere and
only their syntax is shown below. These commands will be fully-documented after the
functionality and generality are improved.

v Commands

At page 48
[View] At <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Block Attribute page 124
Block <block_id_range> Attribute <attribute>

Block Element Type page 124
Block <block_id_range> Element Type <element_type_name>

Block Geometry Type page 124
Block <id> {volume | surface | curve } <block_id_range>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual”9

Block Label...Body Visibility Command Index

| Block Label
| Block <block_id_range> Label { on | off }
Block Visibility page 52

Block <block_id_range> Visibility { on | off }

Body Copy page 79
Body <body_id_range> Copy [Move <x> <y> <z>]
Body <body_id_range> Copy [Reflect {x|y|z}]
Body <body_id_range> Copy [Reflect <x> <y> <z>]
Body <body_id_range> Copy [Rotate <angle> About {x|y|z}]
Body <body_id_range> Copy [Rotate <angle> About <x> <y> <z>]
Body <body_id_range> Copy [Scale <scale>]

| Body Geometry Visibility page 53
Body <body_id_range> Geometry {on | off }
Body <body_id_range> Geometry Visibility { on | off }

I Body Interval page 97
Body <body_id_range> Interval <interval>

| Body Label

| Body <body_id_range> Label {on | off | name | id | interval}

I Body Mesh Visibility page 53

Body <body_id_range> Mesh {on | off }
Body <body_id_range> Mesh Visibility { on | off }

Body Move page 79
Body <body_id_range> [Copy] Move <x> <y> <z>

Body Reflect page 81
Body <body_id _range> [Copy] Reflect {x|y|z}
Body <body_id_range> [Copy] Reflect<x> <y> <z>

Body Restore page 82
Body <body_id_range> Restore

Body Rotate page 81
Body <body_id_range> [Copy] Rotate <angle> About {x|y|z}
Body <body_id_range> [Copy] Rotate <angle> About <x> <y> <z>

Body Scale page 80
Body <body_id _range> [Copy] Scale <scale>

| Body Size page 97
Body <body_id range> Size <size>

I Body Visibility page 53
Body <body_id_range> { on | off }
Body <body_id_range> Visibility { on | off }

130 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Command Index BoundaryLayer...Color SideSet

BoundaryLayer page 107
BoundaryLayer <layer_id_range> First [Layer] <depth> Growth [Factor] <growth>
Total Depth <depth> [Sublayer <depth>]
BoundaryLayer <layer_id_range> First [Layer] <depth> Growth [Factor] <growth>
Layers <count> [Sublayer <depth>]

BoundaryLayer Surface page 107
BoundaryLayer <layer_id> Curve <curve_id_range>
Surface <surface_id>

Brick page 71
[Create] Brick Width <width> [Depth <depth> Height <height>]

Check
Check {bodies|surfaces|curves}

Color Background page 44
Color Background <color_name>
Color Background <color_id>

Color Block page 53
Color Block <block_id_range> <color_name>

Color Body page 53
Color Body <body_id_range> <color_name>
Color Body <body_id_range> <color_id>

Color Body Geometry page 53
Color Body <body_id> Geometry <color_name>
Color Body <body_id> Geometry <color_id>

Color Body Mesh page 53
Color Body <body_id_range> Mesh <color_name>
Color Body <body_id_range> Mesh <color_id>

Color Group
Color Group <group_id_range> <color_name>
Color Group <group_id_range> <color_id>

Color Group Geometry
Color Group <group_id_range> Geometry <color_name>
Color Group <group_id_range> Geometry <color_id>

Color Node page 53
Color Node <color>

Color NodeSet page 53
Color NodeSet <nodeset_id_range> <color>

Color SideSet page 53
Color SideSet <sideset_id_range> <color>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai31

Color Surface...Create Prism Command Index

132

Color Surface page 53
Color Surface <surface_id_range> <color>
Color Surface <surface_id_range> <color_id>

Color Surface Geometry page 53
Color Surface <surface_id_range> Geometry <color>
Color Surface <surface_id_range> Geometry <color_id>

Color Surface Mesh page 53
Color Surface <surface_id_range> Mesh <color>
Color Surface <surface_id_range> Mesh <color_id>

Color Volume page 53
Color Volume <volume_id_range> <color>
Color Volume <volume_id_range> <color_id>

Color Volume Geometry page 53
Color Volume <volume_id_range> Geometry <color>
Color Volume <volume_id_range> Geometry <color_id>

Color Volume Mesh page 53
Color Volume <volume_id_range> Mesh <color>
Color Volume <volume_id_range> Mesh <color_id>

Color Sheet page 53
Color Sheet <sheet_id_range> <color>
Color Sheet <sheet_id_range> <color_id>

Comment
Comment ‘text written to journal file’

Copy Mesh page 114
Copy Mesh Surface <surface_id> Onto Surface <surface_id>
Copy Mesh Volume <volume_id> Onto Volume <volume_id>

Create Brick page 71
[Create] Brick Width <width> [Depth <depth> Height <height>]

Create Cylinder page 71
[Create] Cylinder Height <height> Radius <radius>
[Create] Cylinder Height <height> Major Radius <radius> Minor Radius <radius>

Create Frustum page 73
[Create] Frustum Height <height> Major Radius <radius>
Minor Radius <radius> [Top <top_radius>]
[Create] Frustum Height <height> Radius <radius> [Top <top_radius>]

Create Prism page 72
[Create] Prism Height <height> Sides <sides> Major <radius>
Minor <radius>
[Create] Prism Height <height> Sides <sides> Radius <radius>

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Command Index Create Pyramid...Delete Face

Create Pyramid page 74
[Create] Pyramid Height <height> Sides <sides> Major <radius>
Minor <radius> Top <radius>
[Create] Pyramid Height <height> Sides <sides> Radius <radius>

Create Sphere page 74
[Create] Sphere Radius <radius>
[Create] Sphere Radius <radius> [Inner Radius <inner_radius>]
[xpositive] [ypositive] [zpositive] [delete]

Create Torus page 75
[Create] Torus Radl <R1> Rad2 <R2>

Curve Interval page 97
Curve <curve_id_range> Interval <interval>

Cur ve Label
Curve <curve_id_range> Label {on | off | name | id | interval}

Curve Reverse Bias page 97
Curve <curve_id_range> ReverseBias

Curve Scheme Curvature
Curve <curve_id_range> Scheme Curvature
Curve Scheme Bias page 97

Curve <curve_id_range> Scheme Bias Factor <growth_factor>

Curve Scheme Equal page 97
Curve <curve_id_range> Scheme Equal

Curve Size page 97
Curve <curve_id_range> Size <size>

Cylinder page 71
[Create] Cylinder Height <height> Radius <radius>
[Create] Cylinder Height <height> Major Radius <radius> Minor Radius <radius>

Decompose page 85
Decompose <body_id> With <body_id>

Delete Body
Delete Body <body_id_range>

Delete Face page 118
Delete Face <face_id> Nodel <nodel id> Node2 <node2_id>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai33

Delete Mesh...Draw Volume

Delete Mesh

Delete Mesh
Delete Mesh Vertex <vertex_id_range>
Delete Mesh Curve <curve_id_range>

Delete Mesh Surface <surface_id_range>
Delete Mesh Volume <volume_id_range>

Delete Mesh Body <body id_range>
Delete Mesh Group <group_id_range>

Display
Display

Draw Block
Draw Block <block_id_range>

Draw Body
Draw Body <body_id_range>

Draw Curve
Draw Curve <curve_id_range>

Draw Edge
Draw Edge <edge_id_range>

Draw Face
Draw Face <face_id_range>

Draw Group
Draw Group <group_id_range>

Draw Hex
Draw Hex <hex_id_range>

Draw Loop
Draw Loop <loop_id_range>

Draw Node
Draw Node <node_id_range>

Draw NodeSet

Draw NodeSet <nodeset_id_range>

Draw SideSet

Draw SideSet <sideset_id_range>

Draw Surface

Draw Surface <surface_id_range>

Draw Vertex
Draw Vertex <vertex_id_range>

Draw Volume

Draw Volume <volume_id_range>

134 CUBIT Version 1.11.0 Reference Manual

Command Index

page 117

page 44

page 51

page 51

page 51

page 51

page 51

page 51

Undocumented

page 51

page 51

page 51

page 51

page 51

page 51

Document Version 4/18/96

Command Index Echo...Graphics Mode

Echo page 41
[Set] Echo {on | off}

Exit page 41
Exit
Quit

Export page 127

Export Fred ‘<filename>’
Export Genesis ‘<filename>’
Export Xpatch ‘<filename>’

From page 48
[View] From <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Frustum page 73
[Create] Frustum Height <height> Major Radius <radius>
Minor Radius <radius> [Top <top_radius>]
[Create] Frustum Height <height> Radius <radius> [Top <top_radius>]

Geometry Visibility page 52
Geometry { on | off }
Geometry Visibility { on | off }

Graphics Autocenter page 46
Graphics Autocenter {on | off}

Graphics Autoclear page 46
Graphics Autoclear {on | off }

Graphics Axis page 47
Graphics Axis {on | off}

Graphics Border page 46
Graphics Border {on | off}

Graphics Center page 47
Graphics Center

Graphics Clear page 47
Graphics Clear

Graphics LineWidth page 47
Graphics LineWidth <width>

Graphics Mode page 45
Graphics Mode FlatShade
Graphics Mode HiddenLine
Graphics Mode PolygonFill
Graphics Mode Painters
Graphics Mode SmoothShade
Graphics Mode WireFrame
Graphics Mode Dual

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai35

Graphics Pan...Hardcopy Command Index

Graphics Pan
[Graphics] Pan {Left | Right | Up | Down} <factor> Animation Steps <number>
[Graphics] Pan Cursor Animation Steps <number>

Graphics Perspective page 49
Graphics Perspective {on | off}

Graphics Perspective Angle page 49
Graphics Perspective Angle <view_angle_in_degrees>

Graphics Text Size page 54
Graphics Text Size <size_factor>

Graphics Window
Graphics Window Active <window_number>
Graphics Window Create <window_number>
Graphics Window Delete <window_number>

Graphics WindowsSize page 44
Graphics WindowSize <width_in_pixels> <height_in_pixels>
Graphics WindowSize Maximum

Graphics Zoom page 50
[Graphics] Zoom <X_min> <Y_min> <X_max> <Y_max>
Animation Steps <number>
[Graphics] Zoom Cursor Animation Steps <number>
[Graphics] Zoom Reset
[Graphics] Zoom Screen <Scale_Factor> Animation Steps <number>

Group
Group ‘group_name’ Add <list_of_entity ranges>
Group <group_id> Add <list_of entity _ranges>
Group ‘group_name’ Remove <list_of entity_ranges>
Group <group_id> Remove <list_of_entity ranges>

Group Interval
Group <group_id_range> Interval <interval>

Group Geometry Visibility
Group <group_id_range> Geometry Visibility { on | off }

Group Mesh Visibility
Group <group_id_range> Mesh Visibility { on | off }

Group Label
Group <group_id_range> Label { on | off | interval | id | name }

Group Size

Group <group_id_range> Size <size>

Hardcopy page 55
Hardcopy '<filename>’ [encapculated|postscript|eps] [colorjmonochrome]
Hardcopy ‘<filename>’ Pict [XSize <xsize>] [YSize <ysize>]

136 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Command Index Help...Label

Help page 65
Help
Help <keyword>
<keyword> Help

Hyperhelp page 65
Hyperhelp <keyword>
<keyword> [<identifier>] Hyperhelp

Import Acis page 77
Import Acis '<acis_filename>’

Import Mesh page 119
Import Mesh <exodusll_filename> Block <block_id>
Volume <volume_id>

Import Sizing Function page 120
Import Sizing Function '<exodusl|_filename>’ Block <block_id>
Variable ‘<variable_name>' Time <time_val>

6 Import Fastq page 78
Import Fastq '<fastq_filename>’

Intersect page 82
Intersect <body_id> With <body_id>

Journal page 42
[Set] Journal {on | off}

Label page 54
Label {on | off | interval | id | name }
Label All { on | off | interval | id | name }
Label Body { on | off | interval | id | name }
Label Curve { on | off | interval | id | name }
Label Edge { on | off | interval | id | name }
Label Face { on | off }
Label Geometry { on | off | interval | id | name }
Label Group { on | off | interval | id | name }
Label Hex {on | off }
Label Mesh { on | off }
Label Node { on | off }
Label Surface { on | off | interval | id | name }
Label Vertex { on | off | interval | id | name }
Label Volume { on | off | interval | id | name }

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudi37

List (Geometry/Mesh Related)...Mesh Group

List (Geometry/Mesh Related)
List Body <body id_range> [{geometry|debug}]
List Curve <curve_id_range> [{geometry|debug}]
List Face <mesh_face_id_range>
List Group <group_id_range> [{geometry|debug}]
List Hex <hex_id_range>
List Names [{Group|Body|Volume|Surface|Curve|Vertex}]
List Node <node_id_range>
List Surface <surface_id_range> [{geometry|debug}]
List Totals
List Model
List Vertex <vertex_id_range> [{geometry|debug}]
List Volume <volume_id_range> [{geometry|debug}]

List (Other)
List Debug
List Echo
List Information
List Journal
List Logging
List Memory "<ClassName>’
List Memory
List Settings
List View
List Warning

Merge
Merge All
Merge All Curves
Merge All Surfaces
Merge Body <body_id> With Body <body_id>
Merge Body <body_id_range>
Merge Curve <curve_id> With <curve_id>
Merge Curve <curve_id_range>
Merge Surface <surface_id> With <surface_id>
Merge Surface <surface_id_range>

Mesh Body
Mesh Body <body_id_range>
Mesh Body All

Mesh Curve
Mesh Curve <curve_id_range>
Mesh Curve All

Mesh Group
Mesh Group <group_id_range>
Mesh Group All

138 CUBIT Version 1.11.0 Reference Manual

Command Index

page 76

page 62

page 87

page 114

page 98

Document Version 4/18/96

Document Version 4/18/96

Command Index

Mesh Surface
Mesh Surface <surface_id_range>
Mesh Surface All

Mesh Visibility
Mesh { on | off }
Mesh Visibility { on | off }

Mesh Volume
Mesh Volume <volume_id_range>
Mesh Volume All

Name

Mesh Surface...Pan

page 107

page 52

page 114

Name {Group|Body|Volume|Surface|Curve|Vertex} <id> “entity_name’

Node Move

Node <node_id_range> Move <delta_x> <delta_y> <delta_z>

Node Visibility
Node { on | off }
Node Visibility { on | off }

NodeSet Associativity
NodeSet Associativity { on | off }

NodeSet Curve
NodeSet <nodeset_id> Curve <curve_id_range>

NodeSet Label
NodeSet <nodeset_id_range> Label {on|off}

NodeSet Move
NodeSet <nodeset_id> Move <X> <Y> <Z>
NodeSet <nodeset_id> Move To <X> <Y> <Z>

NodeSet Surface
NodeSet <nodeset_id> Surface <surface_id_range>

NodeSet Vertex
NodeSet <nodeset_id> Vertex <vertex_id_range>

NodeSet Visibility
NodeSet { on | off }
NodeSet Visibility { on | off }
NodeSet <nodeset_id_range> { on | off }
NodeSet <nodeset_id_range> Visibility { on | off }

NodeSet Volume
NodeSet <nodeset_id> Volume <volume_id_range>

Pan

page 52

page 126

page 126

page 117

page 126

page 126

page 52

page 126

[Graphics] Pan {Left | Right | Up | Down} <factor> Animation Steps <number>

[Graphics] Pan Cursor Animation Steps <number>

CUBIT Version 1.11.0 Reference Manuai39

Pause...Rotate Command Index

Pause page 43
Pause

Pick
Pick {Curve|Surface|Volume|Body [List]}

Playback page 43
Playback ‘<journal_filename>
Plot
Plot
Prism page 72
[Create] Prism Height <height> Sides <sides> Major <radius>
Minor <radius>
[Create] Prism Height <height> Sides <sides> Radius <radius>
Pyramid page 74
[Create] Pyramid Height <height> Sides <sides> Major <radius>
Minor <radius> Top <radius>
[Create] Pyramid Height <height> Sides <sides> Radius <radius>
Quality
Quality <entity _list> [Global]
Quality <entity_list> [Global] Display|Draw "Metric Name’
Quit page 41
Quit
Exit
Record page 42
Record '<journal_filename>"’
Record Stop page 43
Record Stop
Reset page 41
Reset
Reset Blocks
Reset Genesis
Reset Nodesets
Reset SideSets
Rotate page 49

Rotate <degree> About [Screen | World | Camera] {x | y | z}
Animation Steps <number>
Rotate <degree> About Curve <curve_id> Animation Steps <number>
Rotate <degree> About Vertex <axis_start_vertex_id>
Vertex <axis_end_vertex_id> Animation Steps <number>

140 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Command Index Set...Surface Interval

Set page 63
[Set] Debug <flag_id> {on|off} [{File ‘filename’ | Terminal}]
[Set] Echo {on | off}
[Set] Info {on | off}
[Set] Journal {on | off}
[Set] Logging {on | off} [{File filename’ | Terminal}]
[Set] Warning {on | off}

Sheet Visibility page 52
Sheet <sheet_id_range> Visibility { on | off }

SideSet Curve page 126
SideSet <sideset_id> Curve <curve_id_range>

SideSet Label
SideSet <sideset_id_range> Label { on | off }

SideSet Surface page 126
SideSet <sideset_id> Surface <surface_id_range>

SideSet Visibility page 52
SideSet { on | off }
SideSet Visibility { on | off }
SideSet <sideset_id_range> { on | off }
SideSet <sideset_id_range> Visibility { on | off }

Smooth Group
Smooth Group <group_id_range>

Smooth Surface page 115
Smooth Surface <surface_id_range> [Global]

Smooth Volume page 116
Smooth Volume <volume_id_range>

Sphere page 74
[Create] Sphere Radius <radius>
[Create] Sphere Radius <radius> [Inner Radius <inner_radius>]
[xpositive] [ypositive] [zpositive] [delete]

Subtract page 83
Subtract <body_id> From <body_id>

Surface Angle
Surface <surface_id_range> Angle <angle_degrees>

Surface Geometry Visibility page 53
Surface <surface_id_range> Geometry Visibility { on | off }

Surface Interval page 97
Surface <surface_id_range> Interval <intervals>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua¥1

Surface Label...Title Command Index

Surface Label
Surface <surface_id_range> Label {on | off | name | id | interval}

Surface Mesh Visibility page 53
Surface <surface_id_range> Mesh Visibility { on | off }

Surface Periodic Interval
Surface <surface_id_range> Periodiic Interval <intervals>

| Surface Scheme Curvature page 99
Surface <surface_id_range> Scheme Curvature
| Surface Scheme Map page 99

142

Surface <surface_id_range> Scheme Map

Surface Scheme Pave page 99
Surface <surface_id_range> Scheme Pave

Surface Scheme Triangle page 99
Surface <surface_id_range> Scheme Triangle

Surface Scheme TriMap
Surface <surface_id_range> Scheme TriMap

Surface Scheme TriPave
Surface <surface_id_range> Scheme TriPave

Surface Size page 97
Surface <surface_id_range> Size <intervals>

Surface Sizing Function page 119, 120
Surface < id > Sizing Function Type { Curvature | Linear | Interval | Inverse |
Test | Exodus} [Min <min_val> Max <max_val>]

Surface Smooth Scheme page 115
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]
Weight Jacobian
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]
Weight Area
Surface <surface_id_range> Smooth Scheme Equipotential [Fixed]
Weight Inverse [Area]
Surface <surface_id_range> Smooth Scheme Laplacian [Fixed]
Surface <surface_id_range> Smooth Scheme Centroid Area Pull [Fixed]

Surface Visibility page 52
Surface <surface_id_range> { on | off }
Surface <surface_id_range> Visibility { on | off }

Title page 127
Title '<title>’

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

CHAPTER

Torus page 75
[Create] Torus Major [Radius] <R1> Minor [Radius] <R2>

Unite page 83
Unite <body_id> With <body_id>
Unite Body <body _id_list> [All]

Up page 48
[View] Up <X_coord> <Y_coord> <Z_coord> Animation Steps <number>
Version page 41

Version
Vertex

Vertex <vertex_id_range> {on | off}

Vertex Label
Vertex <vertex_id_range> Label {on | off | name | id | interval}

Vertex Visibility page 52
Vertex { on | off }
Vertex Visibility { on | off }

Video
Video { on | off }

Video Initialize page 55
Video Initialize [<number_of frames>]
Video Initialize ‘base_filename’ pict [Xsize <xsize>] [Ysize <ysize>]

Video Snap page 56
Video Snap

View At page 48
[View] At <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

View From page 48
[View] From <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

View List page 50
View List

View Reset
View Reset

View Up page 48

[View] Up <X_coord> <Y_coord> <Z_coord> Animation Steps <number>

Volume Geometry Visibility page 53
Volume <volume_id_range> Geom { on | off }
Volume <volume_id_range> Geometry Visibility { on | off }

Volume Interval page 97
Volume <volume_id_range> Interval <intervals>

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuia¥3

CHAPTER

144 CUBIT Version 1.11.0 Reference Manual

Volume Label
Volume <volume_id_range> Label {on | off | name | id | interval}

Volume Mesh Visibility page 53
Volume <volume_id_range> Mesh { on | off }
Volume <volume_id_range> Mesh Visibility { on | off }

Volume Scheme Curvature
Volume <volume_id_range> Scheme Curvature

Volume Scheme Map page 108
Volume <volume_id_range> Scheme Map

Volume Scheme Plaster page 108
Volume <volume_id_range> Scheme Plaster

Volume Scheme Project page 108
Volume <volume_id> Scheme Project Source Surface <surface_id_list>
Target Surface <surface_id>

Volume Scheme Rotate page 108
Volume <volume_id> Scheme Rotate Source Surface <surface_id_list>
Target Surface <surface_id>

Volume Scheme Translate page 108
Volume <volume_id> Scheme Translate
Source Surface <surface_id_list> Target Surface <surface_id>

Volume Scheme Weave page 108
Volume <volume_id_range> Scheme Weave

Volume Size page 97
Volume <volume_id_range> Size <intervals>

Volume Smooth Scheme page 115
Volume <volume_id_range> Smooth Scheme Laplacian
Volume <volume_id_range> Smooth Scheme Equipotential [Fixed]

Volume Visibility page 53
Volume <volume_id_range>{ on | off }
Volume <volume_id_range> Visibility { on | off }

WebCut Body page 85
Webcut Body <body_id> Face <face_id> [Vector <from_vertex> <to_vertex>]
Webcut Body <body_id> Vertex <vertex_ 1> Vertex <vertex_ 2>

Vertex <vertex_3> [Vector <from_vertex> <to_vertex>]

Weight Hexes page 116
Weight Hexes Surface <range> <weight>

Document Version 4/18/96

CHAPTER

Zoom page 50
[Graphics] Zoom <X_min> <Y_min> <X_max> <Y_max>
Animation Steps <number>
[Graphics] Zoom Cursor Animation Step <number>
[Graphics] Zoom Screen <Scale_Factor> Animation Steps <number>
[Graphics] Zoom Reset

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua¥5

CHAPTER

146 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Bl

Appendix B: Examples '

v General Comments...147

v Simple Internal Geometry Generation...148
v Octant of Sphere...149

v Airfoil...151

v The Box Beam...152

v Thunderbird 3D Shell...155

v Assembly Components...158

The purpose of this Appendix is to demonstrate the capabilities of CUBIT chr
finite element mesh generation as well as provide a few examples on the usg of
CUBIT. Some examples also demonstrate the use of the ACIS test harness as
well as other related programs. This Appendix is not intended to be a step-by-
step tutorial.

v General Comments

CUBIT is based upon the ACIS solid modeling kernel. Solid models can be created within
CUBIT or imported in the form of an ACIS geometry fil€urrent means of generating ACIS
solid models external to CUBIT include:

* ACIS Test Harness

« FASTQ viathe FASTQ to ACIS translafisgac$

« Aries” ConceptStation

» PRO/Engineer via a PRO/Engineer to ACIS translator

These examples show model construction using internal CUBIT geometry creation, the ACIS
Test Harness, and the FASTQ translator. Those methods provide the capability of semi-
automatically generating a mesh in batch mode in much the same manner as FASTQ [5],
GENS3D [10], GREPOS [11], and GJOIN [12].

A CUBIT journal file is included for the examples shown in this appendix. ACIS journal files
are also provided for the examples that require geometry generated by ACIS. The user can

1. ACIS typically adds the filename suffix “.sat” to the output files it writes in text format; therefore, theses files are typically
referred to as “.sat” files or “ACIS .sat” files. CUBIT cannot read binary ACIS files.
2. Thefsqacsusers manualis reproduced in Appendix C, “Fsqacs: A FASTQ to ACIS Command Interpreter” on page 163

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua7

APPENDIX B Examples

reproduce the examples interactively by simply entering each of the lines in the journal files as
commands to CUBIT or ACIS. The examples assume that the command line version of CUBIT
will be used. The examples can also be run using the Graphical User Interface version of
CUBIT; however, the details for doing this are not given in this appendix. The journal files
included in the example are also distributed with CUBIT and they may be executed using the
Playback 'filename’ command.

The examples in this appendix each cover several of CUBIT’s mesh generation capabilities. The
CUBIT features exercised by each example are shown in Table B-1.

: Volume
Geometry Surface Meshing :
Examples Meshing
Features Features
Features
g
*(_—U‘ —
S 8
2|9 g= - ©
= n I5) o —
o1 R © S| ® o
WO\, |2 o |- o
wn wn | 2| .© () = > B D
2|ld|e|o 2lE o3l |8|lE|S
Elolofloflg|c|e|S| gl > o) cC |l ol n
Z|o|0||o||S |3 |8 |cs|c|o||8 |8 | 8|S
aolO||OjOo|0O|Z2|a|+F | o|la|+—|=|a
Internal Geometry X X X X
Sphere Octant X | X | X | X X | X X | X
Airfoil X X X
Box Beam X X
Thunderbird X
Assembly Components K K

Table B-1 CUBIT Features Exercised by Examples.

v Simple Internal Geometry Generation

This simple example demonstrates the use of the internal geometry generation capability within
CUBIT to generate a mesh on a perforated block. The geometry for this case is a block with a
cylindrical hole in the center. Itillustrates twéck , cylinder , subtract , pave, andtranslate
commands and boolean operations. The geometry to be generated is shown in Figure B-1. This
figure also shows the curve and surface labels specified in the CUBIT journal file. The final
meshed body is shown in Figure B-2. The CUBIT journal file is:

Internal Geometry Generation Example

Brick Width 10. Depth 10. Height 10. # Create Cube
Cylinder Height 12. Radius 3. # Create cylinder through Cube

View From 34 5 # Update viewing position
Display

148 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

Subtract 2 From 1 # Remove cylinder from cube—create hole
Display
Body 3 Size 1.0 # Default element size for model

Surface 10 Interval 10 # Change intervals on cylinder surface
Curve 15 to 16 Interval 20 # Change intervals around cyl. circ.
Surface 11 Scheme Pave # Front surface paved
Volume 3 Scheme Translate Source 11 Target 12 #Remainder
of block will be meshed by
translating front surface to back surface

Mesh Volume 3 # Create the mesh
Graphics Mode Hiddenline
Display # Hiddenline view of cube (Figure B-2)

The first two lines create a 10 unit cube centered at the origin and a cylinder with radius 3 units
and height of 12 units also centered at the origin. The cylinder height is arbitrary as long as it is
greater than the height of the brick. Thabtract command then performs the boolean by
subtracting the cylinder (body 2) from the block (body 1) to create the final geometry (body 3).
The remainder of the commands simply assign the desired number of intervals and then
generate the mesh. Note that since the cylindrical hole is a “periodic surface,” there are no edges
joining the two curves so the number of intervals along its axis must be set by the surface
interval command. The steps required for generating this geometry and mesh using the
Graphical User Interface are given in the Tutorial in Chapter 2.

Curve Labels

Figure B-1 Geometry for Cube with Cylindrical Hole

v Octant of Sphere

This example also illustrates the internal geometry generation capabilities of CUBIT to generate
an octant of a sphere. The procedure used is to generate the octant by intersecting a brick with
a sphere. The octant is then split into two pieces—a central “core” and an outer “peel” which
are both meshable using the sweeping schemes. This example usghdhe, brick ,

cylinder , intersect , copy, subtract , merge, pave, project , androtate commands.

The following annotated CUBIT journal file will generate the mesh shown in Figure B-3.

Sphere Radius 10. # Generate Sphere (Body 1)
Brick Width 12 Depth 12 Height 12 # Generate Cube (Body 2)

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manua¥9

APPENDIX B Examples

()

X

b

N

)
R
!

AN
X

AN

AN
X

ANEAN
ANEAN

AN
X

AN~
S

AN

Figure B-2 Generated Mesh for Cube with Cylindrical Hole

Body 2 Move 6. 6. 6. #Move Cube to Enclose Octant
Graphics Mode SmoothShade # Only way to see a sphere
Display
Intersect 1 With 2 # Generate Octant (Body 3)
Display
Cylinder Height 22 Radius 3 #Generate Cylinder (Body 4)
Body 3 To 5 Copy # Copy Octant (Body 5)
#and Cylinder (Body 6)
#and another octant (Body 7)
Intersect 4 With 5 # Create Core (Body 8)
View From 12 3
Intersect 3 With 6 # Create Another Core (Body 9)
Subtract 8 From 7 # Create Peel (Body 10)
Merge All # Coalesce Redundant Surfaces
#

End of Geometry Generation.
“Core” is volume/body 9
“Shell” is volume/body 10

#

volume 9 Size 0.5

Surface 33 Scheme Pave # Pave end of core
Mesh Surface 33

volume 9 Scheme Project Source 33 Target 31 #Generate core mesh
Mesh volume 9

Display #Make sure it's there

#

volume 10 Size 0.5 #Make intervals agree for rotate
Surface 37 Scheme Pave # Pave face of peel
Mesh Surface 37

volume 10 Scheme Rotate Source 37 Target 40 #Generate Peel Mesh
Mesh volume 10

Display

Export Genesis 'Octant.gen’ # Write out the mesh

If the generated mesh should consist of one materiabltdok command could be used to

merge the peel and core into a single material block. Note that during a boolean operation (unite,
intersect, and subtract), the bodies used in that boolean are destroyed so it is sometimes
necessary to create extra copies of a body prior to using them in a boolean operation. Also,

150 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

W W o
__\
VL W W W W . e W vy

' .y
\ ' "V T\ St
e eSS S =
SR RS
SRRy
IV TN S OOSS
RN DS
000.0.0000.0,.0 0’000.’.“1““‘““';;19// i
Y 100
il uns
“I“““
hystesisd
Ay
iy
ity

Figure B-3 Generated Mesh for Octant of Sphere

during boolean operations, many bodies are created and deleted and it is difficult to remember
which bodies exist at certain tinfest is recommended that comments be added to the journal
file to make it easier to determine what is being done in the file.

v Airfoll

A simple two-dimensional airfoil is used in this example to demonstrate the use of the boundary
layer tool and paving. The commands used to generate the geometry for this problem, using the
ACIS Test Harness, are not included here. This example usastiecbias, boundarylayer

andpave commandsThe CUBIT commands used to mesh this problem are:

File: foil.jou
#

Air Foil Example

#

journal off

Import Acis ‘foil.sat’

View From10000Up 001 # Set up View
AutoCenter On

Display

Volume 1 Interval 14 # Set Meshing Parameters
Curve 4 Interval 24

Curve 2 Interval 24

Curve 5 To 6 Interval 18

Curve 6 Bias 1.1

Curve 5 Bias 0.909

BoundaryLayer 1 First Layer 0.5 Growth 1.3

BoundaryLayer 1 Surface 1 Curve 5to 6

Surface 1 Scheme Pave

Mesh Surface 1 # Create the Mesh
Display

1. The CUBIT Developers are very much aware of the problems this causes during the generation of complicated meshes and are
implementing methods to permit user-defined naming of bodies and volumes. This capability relies on the persistent ID
concept recently added to ACIS.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab1

APPENDIX B Examples

Graphics zoom .25 .4 .45 .6
geometry visibility off
display

geometry visibility on

The mesh generated by these commands is shown in Figure B-4. In this example, curves 5 and
6 (the curves used to define the shape of the airfoil) use biased interval spacing to place more
elements towards the front of the airfoil. A boundary layer is designated on either side of the
airfoil, which produces elements with high aspect ratios for several layers around the airfoil. The
parameters to theoundarylayer command specify the depth of the first and second rows of
elements, with the boundary layer growth factor inferred from these data. The paving scheme
generates the mesh outside the boundary layer.

(T[] /

[]
/

|

T [A \

Figure B-4 Airfoil mesh generated using the boundary layer tool and paving.

v The Box Beam

A simple example using ACIS/CUBIT is the box beam buckling problem shown in Figure B-5.
A description of an analysis which uses this type of mesh is found in Reference [15]. This
example uses thmerge, nodeset andblock commands and the mapping mesh generation
scheme.

The input file for the ACIS Test Harness for the box beam exan?ple is

1. Thisfile must be preprocessed by Aprepro prior to being input to the ACIS Test Harness.

152 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

Figure B-5 Box Beam example

File: boxBeam.mon

Side = {Side = 1.75}

Height = {Height = 12.0}
Upper = {Upper = 2.0}

block lowerSection width {Side/2.0} depth {Side/2.0} height
{Height - Upper}

block upperSection width {Side/2.0} depth {Side/2.0} height
{Upper}

move lowerSection {Side/4.0} {Side/4.0} {(Height - Upper)/2.0}
move upperSection {Side/4.0} {Side/4.0} {Upper/2.0 + Height -
Upper}

group lowerSection upperSection as boxBeam

save boxBeam to boxBeam.sat

In this example, it is assumed that subsequent analyses will take advantage of the problem
symmetry and therefore only one-quarter of the box beam will be meshed. It is worth noting that
there are a variety of ways to construct a solid model for this problem; however, experience thus
far with ACIS and CUBIT indicates that the easiest way to model the box beam is to use ACIS
block primitives. Even though subsequent meshing will only be performed on the faces of the
solid model, the entire 3D body is saved as an ACIS.sat file. The CUBIT journal file for the box
beam example is:

1. This geometry can also be generated using the internal CUBIT Brick primitive.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab3

APPENDIX B Examples

File: boxBeam.jou

Thickness = {Thickness = 0.06}
Crease = {Crease = 0.01}

XYInts = {XYInts = 10}

ZInts = {ZInts = 90}

Upperlints = {Upperints = 15}

Import Acis 'boxBeam.sat’
#Display

Merge All
Label Surface
#Display

Label Curve
#Display

Curve 1 To 8 Interval {XYInts}
Curve 13 To 16 Interval {XYInts}

Curve 9 To 12 Interval {ZInts-Upperints}
Curve 21 To 24 Interval {Upperints}

Mesh Surface 3
Mesh Surface 6
Mesh Surface 9
Mesh Surface 12

NodeSet 1 Curve 1
NodeSet 2 Curve 4

NodeSet 1 Move {-Crease} 0 0
NodeSet 2 Move 0 {Crease} 0

Block 2 Surface 3
Block 2 Surface 6

Block 1 Surface 9
Block 1 Surface 12

Block 1 To 2 Attribute {Thickness}

Export Genesis 'boxBeam.exoll’
Quit

Commands worth noting in the CUBIT journal file include:

* Block, Block Attribute Allows the user to specify that shell elements for the
surfaces of the solid model are to be written to the output (EXODUSII) database,
and that shell elements be given a thickness attribute. This is necessary since
CUBIT defaults to three-dimensional hexahedral meshing of solid model vol-
umes.

* NodeSet Move Allows the user to actually move the specified nodes by a vec-
tor (Ax, Ay, Az). This is advantageous for the buckling problem, since the numer-
ical simulation requires a small “crease” in the beam in order to perform well.

» Merge Allows the user to combine geometric features (e.g. edges and surfaces).

Other commands in the journal file should be straightforward. Since the problem is sufficiently
simple to mesh using a mapping transformation, specification of a meshing “scheme” is
unnecessary (mapping is the default in CUBIT).

154 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

Finally, note that both the ACIS monitor fileaxBeam.mon) and the CUBIT journal file
(boxBeam.jou) contain macros that are evaluated using Aprepronidiesfileused to semi-
automatically generate the mesh is given below:

File: Makefile

boxBeam.g:boxBeam.exoll
exo2exol boxBeam.exoll boxBeam.g

boxBeam.exoll:boxBeam.sat boxBeam.jou
aprepro boxBeam.jou | cubitb
rm cubit.jou

boxBeam.sat: boxBeam.mon
aprepro boxBeam.mon | acis
rm wjbohnh1.*

clean:
@-rm *.sat *.exoll *.g

While this particular example is a trivial use of the software, it does serve to demonstrate a few
of the capabilities offered by ACIS and CUBIT.

v Thunderbird 3D Shell

This example is the three-dimensional paving of a shell shown in Figure B-6. The 2D wireframe
geometry of the thunderbird is given by the following FASTQ file:

L |

—
Y L
[~ - || v
N | || d
N d

L]

Figure B-6 Sandia Thunderbird 3D shell

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab5

APPENDIX B Examples

#File: tbird.fsq
TITLE
MESH OF SANDIA THUNDERBIRD

$ block {e =.2} int={isq = 20}

$ number of elements in block thick {iblkt = 5 } block thickness
{blkt=.2}

$ block angle {angle=15}

$ magnification factor = {magnificationFactor=1.0}

$ bird {bthick = .018} {ithick = 3} {idepth = 20}

$ {pi = 3.14159265359} {rad=magnificationFactor/pi} {bdepth=1.}
$ preferred normalized element size = {elementSize=0.06}
$ number of intervals along outside edges =

$ {border_int=5} {corner_int=10} {side_int=20}

$ {outsidelntervals= 2*corner_int+side_int}

$ {boxTop=.2} {topIntervals = 8}

$ {insideCurvelnt=8}

$ {MAG=magnificationFactor/3.0}

$ {middlelnside=MAG*0.97}

$ {xCurveStartinside=MAG*0.60}
$ {yCurveStartinside=MAG*0.93}
$ {curveMiddlelnside=MAG*0.81}

$ {xCurveStartOutside=MAG*0.75}
$ {yCurveStartOutside=MAG*1.17}
$ {middleOutside=MAG*1.20}

$ {curveMiddleOutside=MAG*1.01}
$ {boundingBox = MAG*1.5}

$ Thunderbird Coordinates

POINT 1 {MAG*-.40} {MAG*.78}
POINT 2 {MAG*-.40} {MAG*.59}
POINT 3 {MAG*-.22} {MAG*.59}
POINT 4 {MAG*-.22} {MAG*.40}
POINT 5 {MAG*-.75} {MAG*.40}
POINT 6 {MAG*-.78} {MAG*-.09}
POINT 7 {MAG*-.75} {MAG*-.58}
POINT 8 {MAG*-.53} {MAG*-.60}
POINT 9 {MAG*-.54} {MAG*-.23}
POINT 10 {MAG*-.42} {MAG*-.23}
POINT 11 {MAG*-.42} {MAG*.07}
POINT 12 {MAG*-.24} {MAG*.07}
POINT 13 {MAG*-.27} {MAG*-.80}
POINT 14 {MAG*.27} {MAG*-.80}
POINT 15 {MAG*.24} {MAG*.07}
POINT 16 {MAG*.42} {MAG*.07}
POINT 17 {MAG*.42} {MAG*-.23}
POINT 18 {MAG*.54} {MAG*-.23}
POINT 19 {MAG*.53} {MAG*-.60}
POINT 20 {MAG*.75} {MAG*-.58}
POINT 21 {MAG*.78} {MAG*-.09}
POINT 22 {MAG*.75} {MAG*.40}
POINT 23 {MAG*.22} {MAG*.40}
POINT 24 {MAG*.21} {MAG*.78}
POINT 25 {MAG*0.0} {MAG*.80}

$ lines for Third

LINE1STR12
LINE2 STR 23
LINE3 STR 34
LINE4 STR 45
LINE5CIRM576
LINE6 STR 78
LINE7 STR89
LINE 8 STR 9 10

156 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

LINE9 STR 1011
LINE 10 STR 11 12
LINE 11 STR 12 13
LINE 12 STR 13 14
LINE 13 STR 14 15
LINE 14 STR 15 16
LINE 15 STR 16 17
LINE 16 STR 17 18
LINE 17 STR 18 19
LINE 18 STR 19 20
LINE 19 CIRM 20 22 21
LINE 20 STR 22 23
LINE 21 STR 23 24
LINE22STR241071.0

$ REGIONS
SIZE {elementSize*MAG}

REGION11-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15*
-16-17 -18 -19 -20 -21 -22

SCHEME 0 X
BODY 1
EXIT

A command interpreter prograrfsqacs 1 has been developed to convert FASTQ geometry
commands to equivalent ACIS Test Harness commands (outputs an ACIS monitor file). Note,
fsqacs ignores any meshing information in the FASTQ file since there is currently no means
of passing the mesh parameters through the ACIS solid modeler to the CUBIT session. It should
be noted that the 2D wireframe geometry can be directly constructed using wires in the ACIS
Test Harness; however, there may be instances when it is more convenient to use the command
interpreter.

After executing'sgacs , the resulting ACIS monitor file may be included in a subsequent ACIS
session by simply using theclude command as illustrated by the following file:

#File: tbird3d.mon

include third.acs

roll

view scale 200

#draw

cylinder cyll height 1.25 radius 0.5
rotate cyll by 90 about x
#draw

sweep wire f1 by 1.0

#draw

intersect f1 with cyl1 as tbird3d
#draw

list

save tbird3d to third3d.sat

Note that the ACIS.mon file demonstrates how 3D solid models may be constructed starting
from an initial FASTQ profile followed by typical solid modeling commands (e.g. sweep,
intersect) resulting in the desired geometry.

In this example, only the 3D shell of the thunderbird is desired for the finite element model, and
thus, the block command is used to specify that only elements on the surface are to be created.
The following CUBIT journal file demonstrates current 3D paving capability:

[L. Thefsqacsusers manualis reproduced in Appendix C, “Fsqgacs: A FASTQ to ACIS Command Interpreter” on page 163

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab7

APPENDIX B Examples

#File: tbird3d.jou

Import Acis 'third3d.sat’
#Display

View From 6 3 10
Label Surface

Display

Draw Surface 23

Draw Surface 24

Surface 24 Size 0.03
Surface 24 Scheme Pave
Mesh Surface 24

Draw Surface 24

Block 1 Surface 24
Block 1 Attribute 0.03

v Assembly Components

Finally, a more practical example of ACIS/CUBIT is demonstrated by meshing an electronics
assembly package. Figure B-7 shows a section of the assembly model containing three
components: the accelerometer, the timer, and the radar. Also shown is the low density foam
encapsulating these components. Note that the foam is of conical shape and the timer and radar
units both have draft angles.

e L\
/

Radar

Accelerometer

Assembly Components Encapsulant
Figure B-7 Components in electronics assembly package.

In this case, the ACIS solid model is constructed on a component by component basis, and the
final model calledaccelLayer.sat is generated by grouping the separate ACIS volumes
together as one ACIS body. The user may prefer to create the entire solid model in a single ACIS
session. However, for demonstration purposes, the model constructed here consists of five
ACIS.mon files and one FASTQ input file that is converted to ACIS input fisgags . A

158 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

makefile is used to manage the input and output files and efficiently generate the model. The
mesh generated for this assembly is shown in Figure B-8.

SSSNNNRRER
\\\\\\\\\\\\\\\

Ry

W,
R
RSO L A
o

R
WS,
RN
SR
=

\\“

5
S
At
1S

n
T
\
LITRONNONIRSS

R
AL LSS ERY
OSUUNER

-

ae
-

v

X
s
W
i
Ill‘

SN

Figure B-8 Generated mesh for the electronics assembly package.

The complete geometric description is given by the following input files.
#File: timer.mon

option props on
cylinder cyll height 2.107 radius 2 top 2.362
view from 0 0 1 scale 50

block topBlock width 6 depth 6 height 6
move topBlock 0 3 3

rotate topBlock by -4.41 about x

move topBlock 0 .8976 -1.0535

intersect topBlock with cyll as timer
#draw
save timer to timer.sat

#File: radar.mon

option props on

cylinder cyll height 2.107 radius 2 top 2.362
block topBlock width 6 depth 6 height 6
move topBlock 0 3 3

rotate topBlock by -4.41 about x

move topBlock 0 .8976 -1.0535

block rightBlock width 6 depth 6 height 6
move rightBlock 30 3

rotate rightBlock by 8.734 about y

move rightBlock 0 0 -1.0535

move rightBlock 1.787 0 0

copy rightBlock as leftBlock

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuab9

APPENDIX B Examples

reflect leftBlock along x

unite rightBlock with leftBlock as sliceBlocks
#view from 0 0 1 scale 50

#draw

unite topBlock with sliceBlocks

#draw

subtract sliceBlocks from cyll as radar
#draw

block bottomBlock width 6 depth 6 height 6
move bottomBlock 0 -3.125 0

subtract bottomBlock from radar
#draw
save radar to radar.sat

#File: accel.mon

include accel.acs
view from 0 0 1 scale 50
#draw

sweep wire f1 by 2.107 direction 00 1
move f1 0 0 -1.0535

copy fl as accel

save accel to accel.sat

#File: foam.mon

option props on
cylinder cyll height 2.107 radius 2 top 2.362
view from 0 0 1 scale 50

block rightBlock width 6 depth 6 height 6
move rightBlock 3 0 3

rotate rightBlock by 8.734 about y

move rightBlock 0 0 -1.0535

move rightBlock 1.787 0 0

copy rightBlock as leftBlock

reflect leftBlock along x

unite rightBlock with leftBlock as sliceBlocks
#draw

subtract sliceBlocks from cyll as hole
block bottomBlock width 6 depth 6 height 6
move bottomBlock 0 -3.125 0

subtract bottomBlock from hole

#draw hole

retrieve accel.sat as accel
unite accel with hole
#draw hole

cylinder foam height 2.107 radius 2.124 top 2.486
subtract hole from foam

#draw

save foam to foam.sat

#File: accelLayer.mon

option props on
view from 0 0 1 scale 50

retrieve timer.sat as timer
retrieve radar.sat as radar
retrieve accel.sat as accel
retrieve foam.sat as foam

160 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX B Examples

#draw

group timer radar accel foam as accelLayer
#draw
save accellLayer to accelLayer.sat

ACIS commands worth noting in this example include:

» option props on Inserts an edge or “scribe line” along the outer surface of a
cylinder. This changes tl’p\}ariodic1L surface into a surface with only one bound-
ing exterior loop of edges. Some CUBIT meshing algorithms require this type of
solid model when constructing geometry using cylinders, spheres, or tori.

* save Individual components may be saved as separate ACIS solid models.

* retrieve Any valid ACIS.sat file may be retrieved and used to perform booleans
and/or transformations in an ACIS session.

» group Individual components (ACIS bodies) may be grouped together to create
a single ACIS.sat file for an assembly.
The resulting solid model is meshed in CUBIT using the following commands.

#File: accelLayer.jou

journal off

Import Acis 'accelLayer.sat’

Merge All

Display

View From 3 4 -5

Display

front face of foam encapsulant

Surface 28 Size .07

Surface 28 Scheme Pave

Mesh Surface 28

front face of accelerometer

Surface 3 Size .07

Surface 3 Scheme Pave

Mesh Surface 3

front face of radar

Surface 7 Size .07

Surface 7 Scheme Pave

Mesh Surface 7

front face of timer

Surface 16 Size .07

Surface 16 Scheme Pave

Mesh Surface 16

Display

foam encapsulant

Volume 4 Interval 12

Volume 4 Scheme Project Source 28 Target 29
Mesh Volume 4

accelerometer

Volume 3 Interval 12

Volume 3 Scheme Project Source 16 Target 17
Mesh Volume 3

radar

Volume 2 Interval 12

Volume 2 Scheme Project Source 7 Target 10
Mesh Volume 2

Volume 2 Interval 12

timer

Volume 1 Scheme Project Source 3 Target 4

1. Aperiodic surface is one which is not contained within a single exterior loop of edges. It is termed periodic because the regular
parameterization of the surface will have a jump fBoim2rtin the periodic direction.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudlb1

APPENDIX B Examples

Mesh Volume 1

#Display

Block 1 Volume 1

Block 2 Volume 2

Block 3 Volume 3

Block 4 Volume 4

Export Genesis "accelLayer.exoll’

This example demonstrates that setting the number of intervals for every edge in a 3D solid
model can be a very tedious task. When possible, users should use geometry consolidation to
reduce the amount of effort involved in performing this step. Additionally, clever use of the body
interval command can also significantly reduce time and effort. In this example, all components
have the same number of intervals in the z-direction. It is advantageous to set this value for all
edges parallel to the z-axis by using the body interval command. Finally, when a mesh is
projected from a source surface to a target surface, if one of the surfaces is larger than the other
(i.e., if the swept region contains a draft angle), a better quality mesh will usually be generated
if the smaller of the two surfaces is used as the source surface.

162 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Appendix C: Fsgacs: A FASTQ to '

ACIS Command Interpreter

v The FASTQ reader imbedded in CUBIT should be used

‘ instead of the fsgacs translator. The internal FASTQ reader is
accessed by the command import fastq ‘<filename>’, or by the

command line option -fastq <filename>....163

| v Program Execution...163

6 A text converter program, fsqacs, has been developed to provide a meanq of
generating ACIS solid models from a FASTQ input deck. The program should pe
considered more as a command interpreter rather than a “true” translator
since the output is a set of ACIS Test Harness commands as opposed to an adal
solid model.

Note: The FASTQ reader imbedded in CUBIT should be used instead déghes
translator. The internal FASTQ reader is accessed by the comimpod fastq
‘<filename>' , or by the command line optiefastq <filename> .

v Description

Thefsgacs command interpreter is intended to generate a set of ACIS Test Harness commands
which will create the same two-dimensional geometry profile as the geometry described in a
FASTQ filel. The output ofsgacs is a file which can be input to the ACIS Test Harness to
construct a two- or three-dimensional solid model

No mechanism currently exists that allows mesh attributes (for example, interval settings,
nodesets, sidesets, and material specifications) to be attached to the ACIS solid model.
Therefore,fsqacs ignores all mesh information in the FASTQ file. The only FASTQ
commands that are converted are those that represent the geometry definition, i.e., POINT,
LINE, SIDE, REGION, HOLE, and BODY commands. The mesh interval field in the LINE
command and the Element Block ID field in the REGION command are ignored.

v Program Execution

1. FASTQis the two-dimensional mesh generation program previously used by most analysts at Sandia National Laboratories.
The fsqacs translator was written to provide a means for analysts to continue work in progress which previously used FASTQ,
to try CUBIT on geometries previously meshed using FASTQ and to provide some measure of backward compatibility.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl63

APPENDIX C Fsgacs: A FASTQ to ACIS Command Interpreter

Thefsqgacs program is executed using the following UNIX command:
fsqacs [-aprepro] [-nocover] [-tolerance <val>] in_file.fsq [outputfile]

If no output file is specified, the defaultiis: file.acs .

The command line options are:

-tolerance <value> Specifies the distance used in ACIS to determine whether two lines
intersect. See the following text for more information.

-nocover Specifies that the two-dimensional profile will be subsequently used to generate
three-dimensional geometry in ACIS and therefore, the profile should not be covered to generate
a surface.

-aprepro Specifies that the FASTQ file should be processed by Aprepro prior to being
translated.

Specifying the correct tolerance value is very important, particularly when the model contains
circular lines. Due to computational inaccuracies and roundoff, it is possible that connected
lines translated from FASTQ to ACIS may not intersect within the default acis tolerance
distance of 1.0e-6. If problems are experienced producing a correctly closed “wire” in ACIS,
the tolerance value should be increased. A tolerance value of 1.0e-4 has been a good value for
manyfsqacs users.

The-nocover option is provided to control whether a closed ACIS wire should be covered or
not covered. By defaulfsgacs assumes that the FASTQ file will be used to create a two-
dimensional surface model which must be “covered” in the ACIS Test Harness to generate a
surface. If a three-dimensional solid model is desired, the wire should not be “covered” and the
-nocover option should be specified.

The-aprepro option will preprocess the FASTQ input file using Aprepro prior to performing
the translation.

The resulting file consisting of ACIS commands must then be processed by executing the ACIS
Test Harness to generate the solid model that is imported in CUBIT. See “Importing Geometry”
on page 77 and “Examples” on page 147 for more information.

v Limitations

Due to the differences in geometry representation between FASTQ and#(2l& has some
limitations:

» Mesh attributes (interval settings, nodesets, sidesets, and material specifications) are not
translated.

e Only the STR, CIRC, and CIRM line types are supported. All other line types will be
converted to straight lines and a warning message will be printed.

« All points defining a line must be defined prior to encountering the LINE command.

* Alllines defining a region must be defined prior to encountering the REGION command.
» ABODY command must be specified.

» The FASTQ file must end with the EXIT command.

» Unless the ACIS Test Harness is reconfigured from the default distributed copy, only
30 edges may be joined to form a region and only 20 regions may be grouped to define a
body.

164 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Bl

Appendix D: CcUBIT Installation '

v Licensing...165

v Distribution Contents...166
v Installation...166

v HyperHelp Installation...166

This Appendix contains information about the licensing and redistributior
restrictions attached to CUBIT, the distribution contents, and installation
instructions. All questions pertaining to obtaining a license for CUBIT should
be directed to:

Marilyn K. Smith

Technology Programs Department

Division 1503, MS-0833

Sandia National Laboratories

P.O. Box 5800

| Albuquerque, NM 87185-0833
Fax: (505) 844-9297, Email: mksmith@sandia.gov

v Licensing

CUBIT is distributed in statically linked executable form for each supported platform.
Supported platforms include the HP 9000 series running HB-8 SPARCstations running

| SunO$ and Solaris, and the SGI running IRIXAdditional platforms will be added as
required.

Note: CUBIT installations have use restrictions. THE CUBIT CODE CANNOT BE
COPIED TO ANOTHER COMPUTER AND THE NUMBER OF USER SEATS ON
EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additional
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and our license
agreements with them limit the number of user seats at Sandia National Laboratories and limit
the number of users who are doing work in conjunction with Sandia National Laboratories.

1. HP-UXis aregistered trademark of Hewlett-Packard Company.
[2. Sun, SunOS, and Solaris are registered trademarks of Sun Microsystems, Inc.
3. IRIXis aregistered trademark of Silicon Graphics, Inc.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudlb5

APPENDIX D CUBIT Installation

Hence, CUBIT cannot be copied and redistributed without affecting the licensing agreement
with the vendors who have proprietary interests in code modules within CUBIT.

Code distributions within Sandia National Laboratories are managed by an informal
memorandum. Code distributions outside Sandia National Laboratories are managed by either
a Use Notice memorandum or by a formal license agreement depending upon the code recipient.
Use Notice and license agreement formats have been developed by the legal department at
Sandia National Laboratories to protect the copyrights of code vendors and to protect the
commercialization of Sandia National Laboratories copyrights to the CUBIT and SEACAS
codes.

v Distribution Contents

In addition to the CUBIT executable, a code distribution can include example inputs and a test
suite for CUBIT and, depending upon the nature of the request for CUBIT, a code distribution
could include certain codes from the Sandia National Laboratories Engineering Analysis Code
Access System [14] (SEACAS). Codes in SEACAS which could be used with CUBIT include
finite element analysis codes, graphical postprocessing codes, and non-graphical pre- and
postprocessing codes. Note that all codes, whether CUBIT or SEACAS codes, run under UNIX
operating systems.

Distributions containing other programs in addition to CUBIT will be supplied in tar format. For
users who cannot access the tar file through ftp, the tar file will be written to magnetic or CD-
ROM media and mailed. Due to possible exposure of the code and subsequent violation of
copyrights and export control regulations, no electronic mailing of CUBIT or other codes is
permitted.

v Installation

CUBIT and supporting CUBIT examples are installed simply by unpacking the tar file and
moving the executables to their final directory. Examples and test problems for CUBIT include
a README file which provides information needed to run the test problems and examples.

Any SEACAS code distributed with CUBIT will be in source code only. The compilation,
linking, and installation of executables is managed by a very complete and extensive installation
script. A complete set of installation procedures is provided with the SEACAS codes.

v HyperHelp Installation

CUBIT uses an online help system from Bristol Technology called HyperHelp. This online help
system allow the viewing of this document and any supporting documentation online. An X
Window system is required to run HyperHelp.

1. UNIXis aregistered trademark of UNIX Systems Laboratories Inc.

166 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX D CUBIT Installation

The HyperHelp Viewer files distributed with CUBIT are shown in Table D-1, “HyperHelp
Distribution Files,” on page 167.

Table D-1HyperHelp Distribution Files

Filenames Description

gunzip.hp700.Z gunzip.sun4.Z gunzip.sgj.Z gunzip utility

hp700R51.tar.gz hp700R52.tar.gz HyperHelp for HP

sgiR41.tar.gz sgiR42.tar.gz HyperHelp for SGI IRIX4 and IRIX5
sun4R41.tar.gz sun4R42.tar.gz HyperHelp for Sun OS 4.1/Solaris 1.1
runtime.tar.gz Printer Configuration Files for All Platforms

This guide describes how to install your copy of HyperHelp from the HyperHelp installation
media. To install HyperHelp 4, you must copy the HyperHelp files from the installation media,
set up the HyperHelp environment.

System Requirements

Although HyperHelp4.0 supports many platforms and operating systems, the hardware and
software requirement as supplied by the CUBIT distribution are as follows.

Hardware Requirements

« CPU

HP 9000 Series 700/800 systems
Silicon Graphics systems
Sun SPARC systems

e Disk Space

HyperHelp Viewer: 13MB (includes sample files and printer configuaration files)
e Printer

Postscript Level 1 and Level 2

PCL Level 4 and Level 5

Software Requirements

e Operating System

HP-UX 9.05

IRIX 4.0.5F or IRIX 5.0

SunOS 4.1/Solaris 1.1

SunOS 5.3/Solaris 2.3 (avaiable shortly)

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudlb7

APPENDIX D CUBIT Installation

e Windowing Environment

X11R5/Motif1.2
X11R4/Motifl.1.4
OpenWindows 3.0

Copying HyperHelp Files
Identify the directory you want to install HyperHelp in, create that directory (if necessary), and
cd to it.
For example, if you want to install HyperHelp/apt/help , enter the following commands:
mkdir /opt/help
cd /opt/help

The HyperHelp installation procedure will creatbygperhelp subdirectory in the current
working directory.

Uncompress and unzip the HyperHelp files with the following commands:
uncompress *.Z
Jgunzip. arch *.gz
Thearch represents your platform architecture (for example, sun4 or hp700).
Unarchive each file that ends with thar extension as follows:
tar xpvffilenametar

The following table shows the HyperHelp installation directory structure:

Directory Description
install_dir/hyperhelp/bin Contains the HyperHelp Viewer.
install_dir/hyperhelp/Xp Contains Xprinter configuration files.

install_dir/hyperhelp/RELEASE Release information text file.

install_dir/hyperhelp/hoh.hlp How to Use HyperHelp help file.

Setting Up the HyperHelp Environment

Set theHHHOMEnvironment variable to the location of the HyperHelp files.
C shell users: Add the following to yownshrc or.login file:
setenv HHHOME install_dir /hyperhelp
Korn shell or Bourne shell users: Add the following to yquofile file:
HHHOME=install_dir /hyperhelp;export HHHOME
Add $HHHOME/bin to your PATH environment variable.

If you have an earlier version of HyperHelp installed on your system, make sure you add
$HHHOME/bin BEFORE the old HyperHelp path in your PATH environment variable.

168 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX D CUBIT Installation

Activate your HyperHelp X resources with the following command:
cp $HHHOME/app-defaults /usr/lib/X11/app-defaults/HyperHelp

If you are unable to get access to this directory, you can append the contiidtsHOME/
app-defaults to $SHOME/.Xdefaults

Log out and log back in to your system to restart your X server.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manudl69

]

Appendix E: Available Colors '

Table 6-1 in this Appendix lists the colors available in CUBIT at this time. Al
color commands require the specification of the color name. The table in t
appendix lists the color number (#), color name, and the red, green, and bl
components corresponding to each color for reference.

Table 6-1Available Colors Table 6-1Available Colors
Color Name Red G;ee Blue # Color Name Red G;ee Blue
0 | black 0.000| 0.000 | 0.000 19 | lightsalmon 1.000 | 0.627 | 0.478
1| red 1.000 | 0.000 | 0.000 20 | springgreen 0.000 | 1.000 | 0.498
2 | green 0.000 | 1.000 | 0.000 21 | slateblue 0.416 | 0.353 | 0.804
3 | yellow 1.000| 1.000 | 0.000 22 | sienna 0.627 | 0.322 | 0.176
4 | blue 0.000 | 0.000 | 1.000 23 | seagreen 0.180 | 0.545 | 0.341
5 | magenta 1.000| 0.000 | 1.000 24 | deepskyblue 0.000 | 0.749 | 1.000
6 | cyan 0.000| 1.000 | 1.000 25 | khaki 0.941 | 0.902 | 0.549
7 | white 1.000| 1.000 | 1.000 26 | lightskyblue 0.529 | 0.808 | 0.980
8 | grey 0.500 | 0.500 | 0.500 27 | turquoise 0.251| 0.878 | 0.816
9 | orange 1.000| 0.647 | 0.000 28 | greenyellow 0.678 | 1.000 | 0.184
10 | pink 1.000 | 0.753 | 0.796 29 | powderblue 0.690| 0.878 | 0.902
11 | brown 0.647 | 0.165 | 0.165 30 | mediumturquoise 0.282 | 0.820 | 0.800
12 | gold 1.000| 0.843 | 0.000 31| skyblue 0.529 | 0.808 | 0.922
13 | lightblue 0.678| 0.847 | 0.902 32 | tomato 1.000| 0.388 | 0.278
14 | lightgreen 0.000 | 0.800 | 0.000 33 | lightcyan 0.878 | 1.000 | 1.000
15 | salmon 0.980| 0.502 | 0.447 34 | dodgerblue 0.118 | 0.565 | 1.000
16 | coral 1.000| 0.498 | 0.314 35 | aguamarine 0.498 | 1.000 | 0.831
17 | purple 0.627 | 0.125 | 0.941 36 | lightgoldenrodyellow| 0.980 | 0.980 | 0.824
18 | paleturquoise 0.686 | 0.933 | 0.933 37 | darkgreen 0.000 | 0.392 | 0.000

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/ 1

APPENDIX E Available Colors

Table 6-1Available Colors

Table 6-1Available Colors

Color Name Red G;ee Blue # Color Name Red G;ee Blue
38 | lightcoral 0.941 | 0.502 | 0.502 60 | orangered 1.000| 0.271 | 0.000
39 | mediumslateblue 0.482 | 0.408 | 0.933 61 | palevioletred 0.859 | 0.439 | 0.576
40 | lightseagreen 0.125| 0.698 | 0.667 62 | limegreen 0.196 | 0.804 | 0.196
41 | goldenrod 0.855| 0.647 | 0.125 63 | mediumblue 0.000 | 0.000 | 0.804
42 | indianred 0.804| 0.361 | 0.361 64 | blueviolet 0.541 | 0.169 | 0.886
43 | mediumspringgreen | 0.000 | 0.980 | 0.604 65 | deeppink 1.000| 0.078 | 0.576
44 | darkturquoise 0.000 | 0.808 | 0.820 66 | beige 0.961 | 0.961 | 0.863
45 | yellowgreen 0.604 | 0.804 | 0.196 67 | royalblue 0.255| 0.412 | 0.882
46 | chocolate 0.824| 0.412 | 0.118 68 | darkkhaki 0.741| 0.718 | 0.420
47 | steelblue 0.275| 0.510 | 0.706 69 | lawngreen 0.486 | 0.988 | 0.000
48 | burlywood 0.871| 0.722 | 0.529 70 | lightgoldenrod 0.933 | 0.867 | 0.510
49 | hotpink 1.000| 0.412 | 0.706 71 | plum 0.867 | 0.627 | 0.867
50 | saddlebrown 0.545| 0.271 | 0.075 72 | sandybrown 0.957 | 0.643 | 0.376
51 | violet 0.933| 0.510 | 0.933 73 | lightslateblue 0.518 | 0.439 | 1.000
52 | tan 0.824| 0.706 | 0.549 74 | orchid 0.855| 0.439 | 0.839
53 | mediumseagreen 0.235| 0.702 | 0.443 75 | cadetblue 0.373| 0.620 | 0.627
54 | thistle 0.847| 0.749 | 0.847 76 | peru 0.804 | 0.522 | 0.247
55 | palegoldenrod 0.933| 0.910 | 0.667 77 | olivedrab 0.420 | 0.557 | 0.137
56 | firebrick 0.698 | 0.133 | 0.133 78 | mediumpurple 0.576 | 0.439 | 0.859
57 | palegreen 0.596| 0.984 | 0.596 79 | maroon 0.690 | 0.188 | 0.376
58 | lightyellow 1.000| 1.000 | 0.878 80 | lightpink 1.000| 0.714 | 0.757
59 | darksalmon 0.914| 0.588 | 0.478 81 | darkslateblue 0.282| 0.239 | 0.545

82 | rosybrown 0.737 | 0.561 | 0.561

83 | mediumvioletred 0.780| 0.082 | 0.522

84 | lightsteelblue 0.690 | 0.769 | 0.871

85 | mediumaquamarine| 0.400 | 0.804 | 0.667

172

CUBIT Version 1.11.0 Reference Manual

Document Version 4/18/96

CHAPTER

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual73

CHAPTER

174 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Appendix . cuBIT Application '

Defaults File

The CUBIT Application Defaults file (CUBIT.ad) file is reproduced here. Th¢
use of this file is discussed in “Graphics Customization” on page 21.

cubit.defaultFontList: -*-helvetica-bold-r-*-*-*-120-75-75-*-*-is08859-1

*webCutShell.background: Grey

*webCutShell.x: 264

*webCutShell.y: 113

cubit*XmTextField*background: LightBlue
cubit*webCutWindow*XmText*background: AntiqueWhite

cubit*XmForm*capture_beginBtn.background: Wheat
cubittXmForm*capture_endBtn.background: Wheat
cubittXmForm*applyBtn.background: Wheat
cubittXmForm*helpBtn.background: Wheat
cubit*XmForm*cancelBtn.background: Wheat
cubit*XmForm*closeBtn.background: Wheat
cubit*XmForm*picker_helpBtn.background: Wheat
cubit*XmForm*picker_applyBtn.background: Wheat
cubit*XmForm*picker_cancelBtn.background: Wheat
cubit*XmForm*pickerBtn.background: Wheat

cubit*consoleShell.background: Grey
cubit*consoleWindow.x: 16

cubit*consoleWindow.y: 746
cubit*consoleWindow.background: Grey
cubit*XmScrolledWindow.consoleText.background: Grey
cubit*XmForm.btnRC.background: Grey
cubitrXmForm.XmRowColumn.btn1.background: Bisque
cubitrXmForm.XmRowColumn

.btn2.background: Bisque

cubittXmForm.XmRowColumn.btn3.background: Bisque
cubittXmForm.XmRowColumn.btn4.background: Bisque
cubitrXmForm.XmRowColumn.btn5.background: Bisque
cubit*XmForm.XmRowColumn.btn6.background: Bisque
cubit*XmForm.XmRowColumn.btn7.background: Bisque
cubittXmForm.XmRowColumn.btn8.background: Bisque
cubittXmForm.XmRowColumn.btn9.background: Bisque
cubittXmForm.XmRowColumn.btn10.background: Bisque

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/5

APPENDIX F CUBIT Application Defaults File

I Don’t recommend changing, but wanted it here for easy changing
cubit*webCutWindow.helpinfo.value: Create a webcut by selecting a body,\n\
supplying a plane for the cut and an optional\n\

vector.\n\

\n\

The plane may be either a face or 3 vertices to\n\

make a face and an optional vector.\n\

\n\

If vector is omitted, default will be 360 degrees.

*cubitmMain.x: 96
*cubitmMain.y: 319
*cubitmMain.title: CUBITM
*cubitmMain.iconName: CUBITM
*cubitmBB.x: 96

*cubitmBB.y: 319
*topLevelShell.x: 595
*topLevelShell.y: 309
*bulletinBoard.x: 595
*pbulletinBoard.y: 309
*bulletinBoard.cubitmDA.x: 10
*pulletinBoard.cubitmDA.y: 10
cubit*background: Grey

176 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Bl

Appendix (5. HyperHelp Viewer '

v Starting the Viewer...177

v Using Menus and Buttons...177

v Searching for Specific Information...179
v Navigating Through Help...181

v Making Notes on Topics...183

v Printing Help Topics...184

v Starting the Viewer

Although the on-line help system appears to be a seamless part of the parent application, f is
actually a separate application that the user must activate. There are three ways to activatg the
HyperHelp Viewer:

» Choose an option on the parent application’s Help menu. The Viewer generally displays a list
of topics from which to choose, although the help author can specify any topic to be
displayed. Pressing the F1 function key usually performs the same function. Note that the
application programmer must include the necessary function call to activate the Viewer.

» Press Shift-F1 to access context-sensitive help, then select an object by clicking on it. If the
selected object has been coded by the application developer to provide context-sensitive
help, the Viewer immediately displays the appropriate topic. Note that the application
programmer must include the necessary function call to activate the Viewer.

» Usethényperhelp command to activate the Viewer in stand-alone mode. This method is
very useful for testing the help system before integrating it into your application. For more
information about thbyperhelp command, see Chapter 9, “Compiling and Testing your
HyperHelp System.”

v Using Menus and Buttons

The HyperHelp Viewer contains four pull-down menus and several special navigation buttons
for navigating through the help system in its default configuration. Help authors can use X
Window System resources and HyperHelp macros to customize the buttons.

Using HyperHelp Menus

The following table describes the HyperHelp Viewer menus:

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual/ 7

APPENDIX G HyperHelp Viewer

Menu Name Function

File Open a help file, print help topics, printer setup, and exit.

Edit Copy or annotate a help topic. Annotated topics display a paper
clip icon; click on the clip to view the annotation.

Bookmark Mark a help topic so you can access it directly from the Bookmark
menu.

Help Explain how to use the HyperHelp Viewer application.

Using HyperHelp Buttons

The following table describes the HyperHelp Viewer buttons:

Button .
Function
Name
Contents Display the main index of help topics.
Search Enter a keyword to search for help.
Back Display the previous help topic.
History Display the last 40 help topics viewed.

Using the Keyboard with HyperHelp

Within the HyperHelp Viewer, you can use the mouse to select all button and menu operations,
as well as to select hypertext jump terms and defined terms. In addition to the mouse, the
HyperHelp Viewer also lets you perform some operations with the keyboard.

Menus

You can open a Viewer menu by holding down the ALT key and pressing the underlined
letter in the menu name. The following table lists the ALT key combinations to open
Viewer menus:

Key

Sequence Menu
ALT-F File
ALT-E Edit
ALT-B Bookmark
ALT-H Help

Once a menu is open, you can press the underlined letter in the desired option to choose
that option. For example, if the File menu is open, preesexit the Viewer.

178 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX G HyperHelp Viewer

You can also use the arrow keys to move around through the open menus. The up and
down arrow keys highlight the previous or next items within a menu. For example, if the
File menu is open and the Open option is highlighted, you can press the down arrow key to
highlight the Print option instead. When the desired menu option is highlighted, you can
press the ENTER key to choose that option.

The left and right arrow keys open the menu to the left or right of the currently open menu.
For example, if the File menu is open, you can press the right arrow key to open the Edit
menu instead.

Buttons

If a Viewer button is highlighted, you can use the left and right arrow keys to highlight the
button to the left or right of the currently highlighted button. For example, if the History
button is highlighted, you can press the left arrow key to highlight the Search button
instead. The HOME key highlights the left-most button. Press the space bar to press the
highlighted button.

Scrolling Help Window

If you click your mouse with the cursor pointing inside the scrolling help text window, you
can use the PAGE-UP and PAGE-DOWN keys to scroll the window up and down.

v Searching for Specific Information

Once you activate the help system, you generally want to find specific information. There are
three ways to search for specific information in HyperHelp: looking through a list of help topics,
searching for keywords, and searching for specific text.

A keyword is a word or phrase, defined by the help author, that you can use to search for a help
topic if you don’t know exactly how a topic is named internally in the help system. Instead of
looking through the list of help topics, you simply enter a keyword or phrase in the Search
dialog; HyperHelp returns a list of topics for which that keyword is defined.

Instead of searching for keywords defined by the help author, text search allows you to search
for all occurrences of any text phrase in all help topics. HyperHelp returns a list of topics that
contain the phrase, along with the number of times the phrase occurs in that topic.

For example, to find all topics that have information on setting up network printers, you could
find all occurrences afetwork printers

Note: The default HyperHelp configuration does not include full text searching. You must
use theFind() orTextSearch() macro to provide this capability.

To Access Help Topics from the Contents List

1. Press the Contents button. If the help author has provided one, a list of help topics
appears in the Viewer window.

2. Pointto the desired topic and click the left mouse button. HyperHelp displays the new
topic in the Viewer window or a secondary window.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manual79

APPENDIX G HyperHelp Viewer

To Search for a Keyword

1.

2.

Press the Search button.

In the Search dialog, enter the keyword or select a keyword from the list. As you type,
HyperHelp scrolls through the list of defined keywords, highlighting the closest
match. If there is no defined keyword that matches, try another keyword until you find
a match.

When your desired keyword is highlighted, press the Find Topics button. HyperHelp
displays a list of topic titles for which the keyword is defined.

Select the topic that matches the information you are searching for and press the Go
To button or double click on the topic title.

To Find Any Text

Press the Find button.
In the Find dialog, enter the text you want to search for.

Select All Text in the Look At options to search the entire help system, including
topic titles, for your text. If you only want to search topic titles, select Topic Titles
Only.

Select Match Case if you want HyperHelp to only find words exactly as you typed
them.

For example, to find all instancesM&nu but none ofneny enterMenuin the Find
dialog and select Match Case.

Press the Search button to find the text.

While HyperHelp is searching for your text, a Search dialog box appears. This box
displays the number of topics found so far in the search. If you want to cancel the
search, press the Stop Search button.

When the search is complete, HyperHelp displays the Topics Found dialog.

To change the sorting order of the topics, press the Sort button. You can sort the
results on the order of the topics in the help file, alphabetically, or by the number of
hits (instances of the text) found. By default, the results are sorted in the order of the
topics in the help file.

To display the desired topic, highlight the topic and press the Go To button or double
click on the topic title.

To display the previous or next topic in the list, press the Previous or Next button.

180 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX G HyperHelp Viewer

v Navigating Through Help

When you find information about a particular topic, you often want to display help information
on related topics. There are several tools for navigating through the help system to find more
information:

Navigation Tool Description

Defined terms Words or phrases that display a special pop-up help
message (usually the definition of the word or phrase)
when you press the mouse button. A dotted underline
identifies a defined term. When you place your cursor on
the defined term, the cursor changes to a pointing finger.

Jump terms Words or phrases that indicate a cross-reference to a related
topic. A solid underline identifies a jump term. When you
place your cursor on the jump term, the cursor changes to a
pointing finger. When you click the left mouse button, the
related topic appears in the main viewer window or a
secondary window.

Browse sequences Series of related topics coded by the help author to be
displayed in a specific order. If the current topic is part of a
browse sequence, either or both of the Browse buttons is
active. Browse sequences apply only if the help author
makes the Browse buttons available.

Bookmarks Let you mark a help topic so that you can quickly retrieve
it again in the future using the bookmark name.

To Display a Pop-up Definition

1. Place the cursor anywhere on the defined term. A dotted underline identifies a defined
term. The cursor changes to a pointing finger while over the defined term.

2. Press the left mouse button. The definition immediately appears in an overlapping
window.

3. To close a pop-up definition, click the left mouse button.
To Jump to a New Topic

1. Place the cursor anywhere on the jump term. A solid underline identifies a defined
term. The cursor changes to a pointing finger while over the jump term.

2. Press the left mouse button. The new topic appears in the Viewer window or a
secondary window.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai81

APPENDIX G HyperHelp Viewer

To Browse Through a Series of Topics

You may browse through a series of related topics any time the Browse buttons
appear on the Viewer button bar. To browse to the next topic in a series, press the
Browse>> button. The next topic appears in the Viewer window.

To browse to the previous topic in a series, press the <<Browse button. The
previous topic appears in the Viewer window.

To Define a Bookmark

1. While viewing the help topic you wish to mark, choose Define from the Bookmark
menu. The Bookmark dialog appears.

2. Press the OK button to accept the topic title as the bookmark reference, or type your
own bookmark reference. HyperHelp immediately adds the selected topic to the end
of the list of bookmarks.

Note: By default, HyperHelp stores each bookmar®HOME/.hh/ filename .hipab
where$HOMEHs the user’'s home directory afignameis the help file name. If users
want to be able to view each other's bookmarks, they must store them in a common
directory. To change the default location of bookmarks, each user must change the
value of the HHLOCAL environment variable by adding the following line to his or
her.profile (for Bourne shell or Korn shell users):

HHLOCAL= new _directory_name ; export HHLOCAL

C shell users can change the value of HHLOCAL by adding the following entry to their
.cshrc file:

setenv HHLOCAL new_directory _name

If it does not already exist, HyperHelp creates.tie directory in the directory referenced by
the HHLOCAL environment variable.

To Go To a Bookmark Topic

From the Bookmark menu, choose the topic title you want. HyperHelp immediately displays the
associated help topic.

To Delete a Bookmark

1. From the Bookmark menu, choose Define.

2. Onthe Bookmark dialog, select the bookmark you want to delete and press the Delete
button.

182 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX G HyperHelp Viewer

v Making Notes on Topics

HyperHelp’s annotation feature lets you attach a detailed note to a particular topic. For example,
if a topic tells you to enter your network address, you may want to annotate the network address
for your system.

To Create an Annotation

1. From the Edit menu, choose Annotate.

2. On the Annotate dialog, type your annotation and press the OK button. A paperclip
icon appears in the corner of the topic window to indicate that an annotation is
associated with the topic.

Note: By default, HyperHelp stores each annotatidBHOME/.hh/ filename .hlpab
where3HOMES the user’'s home directory afigénameis the help file name. If users
want to be able to view each other's annotations, they must store them in a common
directory. To change the default location of annotations, each user must change the
value of the HHLOCAL environment variable by adding the following line to his or
her.profile (for Bourne shell or Korn shell users):

HHLOCAL= new_directory_name ; export HHLOCAL

C shell users can change the value of HHLOCAL by adding the following entry to their
.cshrc file:

setenv HHLOCAL new _directory _name

If it does not already exist, HyperHelp creates.tie directory in the directory referenced by
the HHLOCAL environment variable.

To View an Annotation

1. Point the cursor to the paperclip icon. The cursor changes to a pointing finger while
over the icon.

2. Press the left mouse button. The Annotation dialog containing the annotation appears.

3. Press the OK button to close the annotation.

To Delete an Annotation

1. Point the cursor to the paperclip icon. The cursor changes to a pointing finger while
over the icon.

2. Press the left mouse button. The Annotation dialog containing the annotation appears.

3. Press the Delete button.

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuii83

APPENDIX G HyperHelp Viewer

v Printing Help Topics

HyperHelp’s printing capabilities enable you to print one topic, multiple topics, or all topics in
a help file.

To Print the Current Help Topic

1. From the File menu, choose Print. The File Print dialog appears.

2. Select Current Topic and press the OK button. HyperHelp prints the current topic to
the selected printer.

Note: If no printer is selected, HyperHelp displays a warning, instructing you to configure a
printer first. See “To Configure a Printer.”

To Print All Help Topics

1. From the File menu, choose Print. The File Print dialog appears.

2. Select All Topics and press the OK button. HyperHelp prints all topics in the current
help file to the selected printer.

Note: If no printer is selected, HyperHelp displays a warning, instructing you to configure a
printer first. See “To Configure a Printer.”

To Print Selected Help Topics

1. From the File menu, choose Print. The File Print dialog appears.

2. Select Selected Topics and press the OK button. HyperHelp displays a list of all the
topics in the current help file in the scrolling list. The list is sorted in the order the

topics appear in the file.

3. Select all of the topics you want to print and press the OK button. To skip topics, hold
down the CTRL button and deselect topics with the mouse. HyperHelp prints the
selected topics to the selected printer.

Note: If no printer is selected, HyperHelp displays a warning, instructing you to configure a
printer first. See “To Configure a Printer.”

To Configure a Printer
1. From the File menu, choose Printer Setup. The Printer Setup Dialog in Figure 6-1
appears.

2. Set all fields to the desired values. The following table describes all printer setup
fields:

184 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX G HyperHelp Viewer

=| Printer Setup |

Outputto: |4 Printer - File | X
Printer: .[HP LaserJet 31 PCL5 on FILE:
Orientation:

Scale : .00
A Portrait

+ Landscape CUDESS [|

U Apply | Save | Reset | Cancel | 0ptions| 1

Figure 6-1 Printer Setup Dialog

Option Description

Output to: Specify whether to send output to a file or to a printer. If you
choose Printer, you can send output to any printer configured
in your SHOME/Xpdefaults file. If you choose File, print
output is sent to an Encapsulated PostScript or generic PCL
file.

Printer: This field only appears if you select Output to: Printer. It
specifies the name of the default printer to send print output to.
Press the Options button to specify a different printer.

File Name: Tihs field only appears if you select Output to: File. Type the
name of the print file you wish to create. To pipe print output
to a command, type a ! character as the first character and then
specify the command to pipe output to. For example, to pipe
output to thdp command, enter the followindp -d ps

EPSF This field only appears if you select Output to: File. Click on
this button to display a list of output file types and select the
desired type. Available types are EPSF (Encapsulated
PostScript), PCL4, and PCL5.

Orientation: Specify portrait or landscape.
Portrait Landscape
Scale: To increase the size of the output, specify a value greater than

1.00. To reduce the size, specify a value less than 1.00. For
example, a value of 2.00 would double the size of the output;
a value of 0.50 would reduce it by half.

Copies: Specify the number of copies to print.

3. To set additional options, such as selecting a new printer or changing the page size,
press the Options button. The Options dialog shown in Figure 6-2 appears.

4. Set all options to the desired values. The following table describes all printer options:

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai85

APPENDIX G HyperHelp Viewer

186

=| Options
Printer Hame: [HP LaserJet 31 PCL5 on FILE:

Resolution: .[3l]l]dpi
Page Size: .[Letter
Faper tray: .[Upper

U Ok | Cancel |

AT

Figure 6-2 Printer Options Dialog

Option Description

Printer Name: Use to change the Printer on the Setup Dialog. Press the
down arrow button to display a list of configured printers. If
the printer you want to print to is not listed, you may
configure it by adding it your SHOME/.Xpdefaults file (see
Appendix F, “Using Xprinter with HyperHelp”). You may
also use the Output to: File option and pipe output to a
command that prints to the desired printer (for example,
Irshtexas "Ip -d ps" initiates a remote shell on the
host texas and executes the command).

Resolution: Specify printer resolution. Values vary among different
printers.

Page Size: Specify paper size. Values vary among different pritners.

Paper tray:: Specify tray where paper is located. Values vary among

different pritners.

5. Press the Save button to make your changes take effect and make them the new
default values, or press the Apply button to make your changes take effect without
changing the default values.

CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

References

B

10
11
12
13
14
15
16
17
18

19

T. D. Blacker and M. B. Stephenson, ‘Paving: a new approach to automated quadrilateral mesh generation’, SAND90-0
Sandia National Laboratories, (1990).

M. B. Stephenson, S. A. Canann, and T. D. Blacker, ‘Plastering: a new approach to automated, 3D hexahedral mesh g
tion’, SAND89-2192, Sandia National Laboratories, (1992).

G. D. Sjaardema, et. aCUBIT Mesh Generation Environment, Volume 2: Developers MaBédiiD94-1101, Sandia Na-
tional Laboratories, (1994).

Spatial Technology, IncACIS Test Harness Application Guide Version $gatial Technology, Inc., Applied Geometry, Inc.,
and Three-Space, Ltd., (1992).

T. D. BlackerFASTQ Users Manual Version 12AND88-1326, Sandia National Laboratories, (1988).
L. A. Schoof EXODUS Il Application Programming Interfadgaternal memo, Sandia National Laboratories, (1992).

W. A. Cook and W. R. Oakes, ‘Mapping methods for generating three-dimensional méshgs’,mech. engvolume 1,
67-72 (1982).

R. E. JonesQMESH: A Self-Organizing Mesh Generation Progr&bA - 73 - 1088, Sandia National Laboratories, (1974).

R. E. Tipton, ‘Grid Optimization by Equipotential Relaxation’, unpublished, Lawrence Livermore National Laboratory
(1990).

A. P. Gilkey and G. D. SjaardenaE=N3D: A GENESIS Database 2D to 3D Transformation Prog@4WD89-0485, San-

P49,

nera-

dia National Laboratories, (1989).

G. D. Sjaardem&GREPOS: A GENESIS Database Repositioning Prog&AND90-0566, Sandia National Laboratories,
(1990).

G. D. Sjaardem&JOIN: A Program for Merging Two or More GENESIS DatabaS@éND92-2290, Sandia National Lab-
oratories, (1992).

G. D. Sjaardem@®PREPRO: An Algebraic Preprocessor for Parameterizing Finite Element AnaBAND92-2291, San-
dia National Laboratories, (1992).

G. D. Sjaardem®verview of the Sandia National Laboratories Engineering Analysis Code Access, Sysin2-2292,
Sandia National Laboratories, (1993).

S. C. Lovejoy and R. G. WhirleRYNA3D Example Problem ManydJCRL-MA--105259, University Of California and
Lawrence Livermore National Laboratory, (1990).

Open Software Foundation, INROSF/Motif™ User’s Guide Revision 1.PTR Prentice Hall, Englewood Cliffs, New Jersey,
(1993).

J. M. OsierKeeping Track, Managing Messages with GNATS, The GNU Problem Report ManagementSgstemanual
for GNATS Version 3.2, Cygnus Support, October 1993.

L. M. Taylor and D. P. Flanagan, Pronto 3D—A Three-Dimensional Transient Solid Dynamics Program, SAND87-1912, San-

dia National Laboratories, (1989).
S. W. Attaway, unpublished, (1993).

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai87

CHAPTER

188 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Glossary

B

Body. A body is simply a collection or set of volumes. It differs from volumes only in the fact tht
booleans are only performed between bodies, not between volumes. The simplest Hody
contains one volume. 68

Brick. A brick is a hexahedral element defined by six connected faces. A brick is owned by fhe
enclosing volume. 90

C

Curve. A curve is a line (not necessarily straight) which is bounded by at least one but not rrjore
than two vertices. 67

E

Edge. An edge is defined by a minimum of two nodes. Additional nodes may exist on the edges of
higher-order elements. An edge on a curve is owned by that curve, an edge in a surface is
owned by that surface, and an edge in a volume is owned by that volume 89

Element Blocks. Element Blocks (also referred to as simply, Blocks) are a logical grouping of el-
ements all having the same basic geometry and number of nodes. 123

F

Face. A face is defined by four connected edges. A face on a surface is owned by that surface, a
face in the interior of of a volume is owned by that volume. 90

G

Geometry primitives. Classes of general geometric shapes which are differentiated by basic param-
eters. CUBIT supports the brick, pyramid, prism, cylinder, torus, frustum, and sphere. 70

H

Hard Point. A vertex which is located in the interior of a surface. It is used to force a node location
to that specific geometric location. 67

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manuai89

APPENDIX

N

Node A node is a single point in space. A node at a vertex is owned by that geometric vertex, a
node on a curve is owned by that curve, a node on the interior of a surface is owned by that
surface, and a node in a volume is owned by that volume. 89

Nodeset. Nodesets are a logical grouping of nodes also accessed through a single ID known as the
Nodeset ID. 124

P

Periodic Surface. A periodic surface is a surface which is not contained within a single exterior
loop of edges. It is termed periodic because the regular parameterization of the surface will
have a jump from 0 to 2p in the periodic direction. 68

S

Sideset. Sidesets represent a grouping of element sides and are also referenced using an integer
Sideset ID. 124

Surface. A surface in CUBIT is a finite bounded portion of some geometric surface (finite or infi-
nite). A set of surfaces bound the volume in a volume. A surface is bounded by a set of
curves. 68

V

Vertex. A vertex occupies a single point in space. A vertex is used to bound a curve and/or to spec-
ify a specific location for a node. 67

Volume. Volumes are volumetric regions and are always bounded by one or more surfaces. For
practical consideration, volumes will always be bounded by two or more surfaces. 68

190 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX

191 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

APPENDIX

192 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Index

Symbols

$HOME/.cubit 20, 21
.cubit 20, 21
Xdefaults 21
Xresources 21

Numerics

2-manifold topology 68

A

ACIS 24, 137, 147

Block 124, 129
Autocenter 46, 135
Autoclear 46, 51, 135
Axis 47, 135

B

Back button 178
Background Color 44, 53, 131
-batch 20
Bias 97, 133
Reverse 133
Block 150, 154
Attribute 124, 129

Import 77 Color 53, 131

Test Harness 24, 77, 86, 147, 157, 163, 164 Curve 124
Active Draw 134

Window 45 Element Type 124, 129
adaptivity 26 Geometry Color 53
airfoil 151 Geometry Type 129
Angle Mesh Color 53

Perspective 47, 49, 136
Animation 143

Pan 136, 139

Rotate 140

View 129, 135, 143

Zoom 136, 145
annotations 183

creating 183

deleting 183

viewing 183
Aprepro 77, 155
-aprepro 164
Arc 77
Aries® ConceptStation 24, 86, 147
aspect ratios 152
Assembly Components 158
At 47, 48, 50, 129, 143
Attribute 124

Document Version 4/18/96

Surface 124
Visibility 130
Volume 124

Body 68
Color 53, 131
Copy 78, 130
Decomposition 85, 144
Draw 51, 134
Geometry Color 53, 131
Geometry Visibility 130
Interval 97, 130, 162
Interval Size 97, 130
Label 54, 137
List 57, 58, 138
Mesh 138
Mesh Color 53, 131
Mesh Visibility 130
Move 79, 130

CUBIT Version 1.11.0 Reference Manuia93

Bookmark menu 178

Reflect 81, 130
Restore 81, 130
Rotate 80, 130
Scale 80, 130
Visibility 53, 130
Webcut 85, 144
Bookmark menu 178
bookmarks 181, 182
creating 182
deleting 182
displaying marked topics 182
Booleans 82
Intersect 82, 137, 149
Subtract 82, 141, 148, 149
Unite 83, 143
Border 46, 135
Boundary Condition 90, 124
Contact Surface 124
NodeSet 124, 126
SideSet 124, 126
BoundaryLayer 105, 106, 107, 151
Curve 131
Parameters 131
Surface 131
Box 76
Box Beam 152
Brick 70, 131, 132, 148, 149
Dialog Box 71
browse sequences 181, 182
Button
Help 65
buttons
Back 178
Contents 178, 179
default 178
History 178
keyboard operations 179
Search 178
By (range) 23

C

Cellular Topology 68
Center 46, 47, 135
Chamfer 77

Clear 47, 51, 135

194 CUBIT Version 1.11.0 Reference Manual

Color 53
Background 44, 53, 131
Block 53, 131
Body 53, 131
Geometry 131
Mesh 131
Dialog Box 54
Geometry 131
Menu 53
Mesh
Surface 132
Volume 132
Node 53, 131
NodeSet 53
Nodeset 131
SideSet 53, 131
Surface 53, 132
Geometry 132
Mesh 132
Table 171
Volume 53, 132
Geometry 132
Mesh 132
Command Line
Echo 42, 135
Editing 40
History 40
Interface 39
configuring
printers 184
Constraints Menu 126
Contact Surface 124
Contents button 178, 179
context-sensitive help 177
Copy 149
Body 78, 130
Dialog Box 79
Mesh 114, 132
Create 69
Brick 70, 132
Cylinder 70, 71, 133
Dialog Box 70
Frustum 70, 73, 132, 135
Prism 70, 72, 132, 140
Pyramid 70, 73, 133, 140
Sphere 70, 74, 133, 141

Document Version 4/18/96

INDEX

INDEX

Torus 70, 74, 133, 143
Window 45

creating

annotations 183
bookmarks 182

Cube with Hole 28, 148
cubit 19

CUBIT.ad 22, 175
CUBIT_HELP_DIR 21
CUBIT_OPT 21

cubitb 19, 41
cubitHelpGUI.hlp 21
cubitx 19, 21

Cursor

Pan 136, 139
Zoom 50, 145

Curvature

Curve Scheme 133
Surface Scheme 142
Volume Scheme 144

Curve 67, 125

Bias 133, 136, 151
Block 124
BoundaryLayer 107
Curvature 133
Delete Mesh 118, 134
Draw 51, 134
Equal 133
Interval 97, 133, 136
Interval Size 97, 133, 136
Label 54, 137
List 57, 58, 138
Merge 87
Mesh 98, 138
NodeSet 126, 139
Reverse Bias 97, 133, 136
Scheme
Bias 97, 133, 136
Curvature 133
Equal 97, 133
SideSet 126, 141
Type 133

Cylinder 70, 71, 132, 133, 148, 149

Dialog Box 72

Document Version 4/18/96

Display 44, 50, 134, 140

D

Debug 62
List 138
Set 141
-debug 20, 62
Decompose 133
Decomposition 84, 85, 144
defined terms 181
Delete
Face 118, 133
Mesh 117, 118, 134
Window 45
deleting
annotations 183
bookmarks 182
Dialog Box
Brick 71
Color 54
Copy 79
Cylinder 72
File Selection 42, 43
Frustum 73
Graphics Draw 51
Graphics View 48
Hardcopy 55
Intersect 82
Journal Record/Play 42
Merge 87
Mesh Delete 118
Mode 45
Move 80
Pause 43
Prism 72
Pyramid 74
Reflect 81
Rotate 81
Scale 80
Sketch 76
Sphere 75
Subtract 83
Torus 75
Visibility 52
WebCut 84
DISPLAY 21
Display 44, 50, 134, 140

CUBIT Version 1.11.0 Reference Manudl95

Draw 50, 51

Draw 50, 51
Block 134
Body 51, 134
Curve 51, 134
Edge 51, 134
Face 51, 134
Hex 51, 134
Loop 134
Menu 51
Node 51, 134
NodeSet 51, 134
SideSet 51, 134
Skeleton 134
Surface 51, 134
Vertex 51, 134
Volume 51, 134

Mesh 144

E

Echo 42, 135
List 138
Set 141
Edge
Draw 51, 134
Label 54, 137
Edit menu 178
Editing
Mesh 115
Element Block 25, 123
Element Type 91, 129
Block 124
Encapsulated 136
Environment Variable
CUBIT_HELP_DIR 21
CUBIT_OPT 21
DISPLAY 21
HOME 21
HOOPS_PICTURE 21
PATH 21
environment variables
HHLOCAL 182, 183
EPS 55, 136
Equal 97, 133
Equipotential 116
Area 116

196 CUBIT Version 1.11.0 Reference Manual

Error 62
Example
Assembly Components 158
Box Beam 152
Cube with Hole 28, 148
Octant of Sphere 149
Thunderbird 3D Shell 155
Execution Options
-batch 20
-debug 20, 62
-fastq 20
-help 20
-Include 20
-information 20, 62
-initfile 20, 21
-input 20
-maxjournal 20
-noinitfile 20
-nojournal 20, 21, 42
-solidmodel 20
-warning 20, 62
Exit 41, 135
Exodus 123
Exodusll 119
Export
Genesis 127, 135

F

INDEX

F1 key 177
Face
Delete 118, 133
Draw 51, 134
Label 54, 137
List 57, 58, 138
False (toggle) 23
FASTQ 24, 78, 137, 163
Import 78
Translator 78
-fastq 20
File
Dialog Box 43
File menu 178
File Selection Dialog Box 42
Filename 23
Files

Document Version 4/18/96

INDEX

$HOME/.cubit 20, 21
Xdefaults 21
Xresources 21
CUBIT.ad 22, 175
cubitHelpGUIl.hlp 21
Exodus 123
Exodusll 119
Genesis 123, 127, 135
Menu 41

Find() 179

FlatShade 46, 135

From 47, 48, 50, 135, 143

Frustum 70, 73, 132, 135
Dialog Box 73

fsqacs 78, 147, 157, 163, 164
-aprepro 164
-nocover 164
-tolerance 164

G

Genesis 123, 127, 135
Export 127
Geometry
Booleans 82
Color 131
Body 53
NodeSet 53
SideSet 53
Surface 53, 132
Volume 53, 132
Creation 69
Decomposition 84
Webcut 84
Definition 67
Label 54, 137
Manipulation 78
Menu 70, 75

Merge 24, 54, 149, 154, 162

Primitives 70
Type 129
Visibility 52, 130, 135
Surface 141
Volume 143
Global 52
Graphics

Document Version 4/18/96

Hardware Platforms 26

Autocenter 46, 135
Autoclear 46, 51, 135
Axis 47, 135
Border 46, 135
Center 47, 135
Clear 47,51, 135
Display 44, 50
Draw 51
Hardcopy 55
Line Width 47, 135
List
View 50
Menu 44, 45, 47, 51
Mode
FlatShade 46, 135
HiddenLine 46, 135
Painters 46, 135
PolygonFill 46, 135
SmoothShade 46, 135
WireFrame 45, 135
Mode Type 45
Pan 136, 139
Perspective 49, 136
Angle 47, 49, 50, 136
Rotate 49
Text Size 54
Window
Active 45
Create 45
Delete 45
Window Create 45
Window Size 44, 136
Zoom 49, 50, 136, 145
Cursor 50
Reset 50
Screen 50
GUI 39

H

Hard point 67

Hard Set 93, 95

Hardcopy 55, 136
Dialog Box 55
Menu 55

Hardware Platforms 26

CUBIT Version 1.11.0 Reference ManudaQ7

Help 65, 137

Help 65, 137
Button 65
Hyperhelp 65, 137
Menu 65
-help 20
Help menu 177, 178
Hex
Draw 51, 134
Label 54, 137
List 57, 58, 138
Weight 116, 144
Weight Surface 116, 144
Weighting Function 116
HHLOCAL 182, 183
HiddenLine 46, 135
History button 178
HOME 21
HOOPS PICTURE 21
HyperHelp
default buttons 178
menus 177
navigation 181
Viewer 177
Hyperhelp 65, 137
hyperhelp command 177

Import

Acis 77, 137

Fastq 78, 137

Mesh 103, 119, 137
-Include 20
Information 62

List 138

Set 141
-information 20, 62
-initfile 20, 21
Initialization File 20
Initialize

Video 55, 143
-input 20
Intersect 82, 137, 149

Dialog Box 82
Interval

Adjustment 96

198 CUBIT Version 1.11.0 Reference Manual

INDEX

Body 97, 130
Curve 97, 133, 136
Default 90
Hard Set 93, 95
Size
Body 97, 130
Curve 97, 133, 136
Surface 97, 142
Volume 97, 144
Specification 91
Surface 97, 141
Volume 97, 143

J

Journal
Dialog Box 42
List 138
Pause 43, 140
Playback 42, 43, 140
Record 42, 140
Set 141
Journal Off 20, 42, 137
-journalfile
Execution Options
-journalfile 20
jump terms 181

K

keyboard
using with the Viewer 178
keyword searching 179, 180

L

Label 53
All 54, 137
Body 54, 137
Curve 54, 137
Edge 54, 137
Face 54, 137
Geometry 54, 137
Hex 54, 137
Mesh 54, 137

Document Version 4/18/96

INDEX

Node 54, 137
Surface 54, 137
Vertex 54, 137
Volume 54, 137
Laplacian 116

Length-weighted Laplacian 116

Line 76

Line Width 47, 135

List 56
Body 57, 58, 138
Curve 57, 58, 138
Debug 138
Echo 138
Face 57, 58, 138
Hex 57, 58, 138
Information 138
Journal 138
Model 138
Node 138
Nodes 57, 58
Settings 62, 138
Surface 57, 58, 138
Totals 138
Vertex 57, 58, 138
View 50, 138, 143
Volume 57, 58, 138
Warning 138

List Debug 138

Loop 110, 134
Draw 134

M

macros
Find() 179
TextSearch() 179
makefile 155
Manifold model 68
Map 99
Scheme
Surface 142
Volume 108, 144
-maxjournal 20
Menu
Color 53
Constraints 126

Document Version 4/18/96

Draw 51

Geometry 70, 75
Graphics 44, 45, 47, 51
Graphics Mode Type 45
Merge 87

Special 42

View 47

Visibility 50

menus

Bookmark 178

default 177

Edit 178

File 178

Help 178

keyboard operations 178

Merge 24, 54, 149, 154, 162

All 86, 87, 138
Curve 87

Dialog Box 87
General 86

Menu 87

Only Curves 87
Only Surfaces 87
Surface 87
Vertex 87

Mesh

Body 138
Color 131
Block 53
Body 53
NodeSet 53
SideSet 53
Surface 53, 132
Volume 53
Copy 114, 132
Curve 98, 138
Delete 117, 118, 134
Dialog Box 118
Deletion 117
Editing 115
GUI 116
Import 103, 119, 137
Label 54, 137
Modify Smooth 115
Smooth
Modify 115

Mesh

CUBIT Version 1.11.0 Reference Manud99

Messages

Surface 107, 139
Visibility 52, 130, 139
Surface 142
Volume 107, 114, 139
Visibility 144
Messages
Debug 62
Error 62
Information 62
Warning 62
Mode
Dialog Box 45
Model
attributes 25
List 138
Move
Body 79, 130
Dialog Box 80
NodeSet 117, 139

N

O

Octant of Sphere 149
Off (toggle) 23
On (toggle) 23
option props on 161
Output
PICT 55
PostScript 55

P

No (toggle) 23
-nocover 164
Node
Color 53, 131
Draw 51, 134
Label 54, 137
List 57, 58, 138
Repositioning 117
Visibility 52, 139
NodeSet 25, 124, 126
Color 53, 131
Curve 126, 139
Draw 51, 134
Geometry Color 53
Mesh Color 53
Move 117, 154
Move To 139
Surface 126, 139
Vertex 126, 139
Visibility 52, 139, 141
Volume 126, 139
-noinitfile 20
-nojournal 20, 21, 42
Non-manifold topology 68

200 CUBIT Version 1.11.0 Reference Manual

Painters 46, 135
Pan 139
Cursor 136
Parameter 23
Optional 23
PATH 21
Pause 43, 140
Dialog Box 43
Pave 24, 99, 148, 149, 151
Surface Scheme 142
Perspective 49, 136
Angle 47, 49, 50, 136
PICT 55
Plaster 26
Volume Scheme 108, 113, 144
Playback 42, 43, 140
Plot 140
PolygonFill 46, 135
PostScript 55, 136
PostScript Begin 26
PostScript End 55
Primitives 69
Arc 77
Box 76
Brick 70, 131, 132
Chamfer 77
Cylinder 70, 71, 132, 133
Dialog Box 70
Frustum 70, 73, 132, 135
Geometry 70
Line 76
Prism 70, 72, 132, 140
Pyramid 70, 73, 133, 140
Round 77

Document Version 4/18/96

INDEX

Sphere 70, 74, 133, 141

Torus 70, 74, 133, 143
printers

configuring 184
printing

all topics 184

configuring printers 184

current topic 184

selected topics 184
Prism 70, 72, 132, 140

Dialog Box 72
PRO/Engineer 24, 77, 86, 147
Project 149

Volume Scheme 108, 110, 111, 144
Pyramid 70, 73, 133, 140

Dialog Box 74

Q

SideSet 25, 124, 126

S

Quit 41, 135, 140

R

Range 23
Record 42, 140
Stop 43, 140
Reflect
Body 81, 130
Dialog Box 81
Repositioning
Node 117
Reset 41, 140
View 143
Zoom 50, 145, 212
Restore
Body 81, 130
Reverse Bias 97, 133
Rotate 49, 140, 149
Body 80, 130
Continuous 49
Dialog Box 81
Volume Scheme 108, 110, 113, 144
Round 77

Document Version 4/18/96

Scale
Body 80, 130
Dialog Box 80
Scheme 90
Bias 97
Curvature 133, 142
Designation 108
Equal 97
Map 99
Surface 142
Volume 108
Pave 99, 142
Plaster 108, 113
Project 108, 110, 111
Rotate 108, 110, 113
Sweep 110
Translate 108, 110, 112
Triangle 99, 100, 142
Volume 108
Curvature 144
Map 144
Plaster 144
Project 144
Rotate 144
Translate 144
Weave 144
Weave 108, 113
Screen
Zoom 145
Search button 178
searching
full text 179, 180
keyword 179, 180
Selective 52
Set
Debug 141
Echo 141
Information 141
Journal 141
Warning 141
Settings
List 62, 138
Shift-F1 key 177
SideSet 25, 124, 126

CUBIT Version 1.11.0 Reference Manu2i01

Size

Color 53, 131
Curve 126, 141
Draw 51, 134
Geometry Color 53
Mesh Color 53
Surface 126, 141
Visibility 52, 141
Size
Body 130
Curve 133, 136
Surface 142
Volume 144
Skeleton
Draw 134
Sketch
Arc 77
Box 76
Chamfer 77
Dialog Box 75, 76
Line 76
Round 77
Smooth
Equipotential 115, 116
Equipotential Area 116
Equipotential Fixed 115
Equipotential Generic 116
Equipotential Inverse Area 115, 116
Equipotential Jacobian 115
GUI 116
Laplacian 116
Length-weighted Laplacian 116
Menu 116
Method
GUI 117
Modify Mesh 115
Scheme 142, 144
Surface 115, 141
Volume 116, 141
Weight
Area 115
Inverse Area 115
Jacobian 115
SmoothShade 46, 135
Snap
Video 56, 143
-solidmodel 20

202 CUBIT Version 1.11.0 Reference Manual

INDEX

Source Surface 108, 162
Special Menu 42
Sphere 70, 74, 133, 141, 149
Dialog Box 75
stand-alone mode 177
Step (range) 23
String 23
Subtract 82, 141, 148, 149
Dialog Box 83
Surface 68, 125, 142
Block 124
BoundaryLayer 107
Color 53, 132
Copy
Mesh 114
Curvature 142
Delete Mesh 118, 134
Draw 51, 134
Geometry Color 53, 132
Interval 97, 141
Interval Size 97, 142
Label 54, 137
List 57, 58, 138
Mapping 99
Merge 87
Mesh 107, 139
Visibility 141, 142
Mesh Color 53, 132
NodeSet 126, 139
Scheme
Curvature 142
Map 99, 142
Pave 99, 142
Triangle 99, 142
SideSet 126, 141
Smooth 115, 141
Equipotential 115
Equipotential Area 116
Equipotential Fixed 115
Equipotential Generic 116
Equipotential Inverse Area 116
Equipotential Jacobian 116
Scheme 142
Weight
Area 115
Inverse Area 115

Document Version 4/18/96

INDEX

Jacobian 115
Source 108
Target 108
Visibility 53, 142
Weight Hexes 116, 144
Sweep
Volume Scheme 110

T

Target Surface 108
Test Harness 24
Text Size 54
TextSearch() 179
Through (range) 23
Thru (range) 23
Thunderbird 3D Shell 155
Title 127, 142
To (range) 23
Toggle 23
-tolerance 164
topics
printing all 184
printing current 184
printing selected 184
Topology
2-manifold 68
Cellular 68
Non-manifold 68
Torus 70, 74, 133, 143
Dialog Box 75
Totals
List 138
Transform 78
Translate 148

Volume Scheme 108, 110, 112, 144

Triangle 99, 100
Surface Scheme 142
True (toggle) 23

U

Unite 83, 143
Up 47, 48, 50, 143
User interface 39

Document Version 4/18/96

Visibility 52

Vv

Version 41, 143
Vertex 67, 143
Delete Mesh 118, 134
Draw 51, 134
Label 54, 137
List 57, 58, 138
Merge 87
NodeSet 126, 139
Visibility 52, 143
Video 55
Initialize 55, 143
Snap 56, 143
View
At 47, 48, 50, 129, 143
Autocenter 46
Autoclear 46, 51
Border 46
Clear 51
FlatShade 46
From 47, 48, 50, 135, 143
HiddenLine 46
List 50, 138, 143
Menu 47
Painters 46
Perspective
Angle 50
PolygonFill 46
Reset 143
SmoothShade 46
Up 47, 48, 50, 143
Window Size 44
WireFrame 45
Viewer
stand-alone mode 177
starting 177
using the keyboard with 178
viewing
annotations 183
Visibility 52
Block 130
Body 53, 130
Body Mesh 130
Dialog Box 52
Geometry 52, 130, 135

CUBIT Version 1.11.0 Reference Manu2i03

204

Volume 68, 125

Volume 143
Global Geometry Type 52
Menu 50
Mesh 52, 139

Surface 142
Mode 52
Node 52, 139
NodeSet 52, 139, 141
SideSet 52, 141
Surface 53

Geometry 141

Mesh 142
Vertex 52, 143
Volume 53, 144

Mesh 144

Volume 68, 125

Block 124
Color 53, 132
Copy
Mesh 114
Delete Mesh 118, 134
Draw 51, 134
Geometry
Color 132
Visibility 143
Geometry Color 53
Interval 97, 143
Size 144
Interval Size 97
Label 54, 137
List 57, 58, 138
Map 108
Mesh 114, 139
Color 132
Draw 144
Visibility 144
Mesh Color 53
Meshing 107
NodeSet 126, 139
Scheme 108
Curvature 144
Map 108, 144
Plaster 108, 113, 144
Project 108, 110, 111, 144
Rotate 108, 110, 113, 144
Sweep 110

CUBIT Version 1.11.0 Reference Manual

Translate 108, 110, 112, 144
Weave 108, 113, 144
Smooth 116, 141
Equipotential 116
Equipotential Fixed 116
Laplacian 116
Scheme 144
Visibility 53, 144

wW

INDEX

Warning 62

List 138

Set 141
-warning 20, 62
Weave

Volume Scheme 108, 113, 144
Web Cutting 84
Webcut

Body 85, 144

Dialog Box 84
Weight 115
Weight Hexes

Surface 116, 144
Weighting Function

Hex 116
Window

Active 45

Create 45

Delete 45
Window Create 45
Window Size 44, 136
WireFrame 45, 135

Y

Yes (toggle) 23

Z

Zoom 49, 50, 136, 145
Cursor 50, 145
Reset 50, 145
Screen 50, 145

Document Version 4/18/96

INDEX Zoom 49, 50, 136, 145

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manu2i05

Zoom 49, 50, 136, 145 INDEX

206 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

Bl

Appendix H: ErRrATA — May 26,1994

Bl

The page number of the form XX.Y indicates that the change is to page XX of

the manual and appears approximately YO0% down the page. For example, lei]e
12.9 indicates that the change is on Page 12 of the manual, 90% down from e
top of the page. The errata are for “Document Version 5/23/94”

Chapter 1

Page 12.9: New command line option: -noecho controls echoing of commands to the termirgl
or GUI console window. Echoing is on by default.

Page 14.5:
cubit.graphics.geometry: 700x700+445+0

Page 21.1: A string parameter is a literal character string contained withinsidgleble
guotes.

Chapter 2

Page 46: Graphics Mode Dialog Box: Ordering of modes is: Wireframe, Hiddenline,
Polygonfill, Painters, Flatshade, Smoothshade. Text for button in middle of window is “Open
View Dialog Box”, Axis Button should not be “grayed out”

Chapter 3

Page 54, Figure 3-2: Mesh and Graphics Menu items swapped.
Page 55, Figure 3-4: Executing CommaadaphicsWindowSize 700 700.

Page 60, Figure 3-8: Graphics Mode Dialog Box: Ordering of modes is: Wireframe,
Hiddenline, Polygonfill, Painters, Flatshade, Smoothshade. Axis Button should not be
“grayed out”

Page 62, Figure 3-1¥IEWPORT button is future technology. Functionality not
implemented.

Chapter 5

Page 105, Figure 5-8: “First Layer Depth” should be “Sublayer depth”, “Second Layer
Depth” should be “First Layer Depth.”

Appendix A (Command Index)

Page 124. Block Command&lockld keyword is replaced bglock

Page 124. Block Element Type command:
—ElementType is replaced blement Type (two words).

Document Version 4/18/96 CUBIT Version 1.11.0 Reference Manu2l11

CHAPTER

Page 129. Graphics Line Width command:
— LineWidth is replaced byine Width (two words).
» Page 129. Graphics Mode command:
—FlatShade replaced byrlat Shade
—HiddenLine replaced bydidden Line
—PolygonFill replaced byolygon Fill
—SmoothShade replaced bysmooth Shade
» Page 129. Graphics Window Size command:
—WindowSize replaced byVindow Size

» Page 129. New Command:

Graphics Zoom Screen page 50
[Graphics] Zoom Screen <Scale_Factor>

» Page 130. Journal Off command. Journal can now be turned off and on. New syntax:

Journal page 42
Journal {on | off}

Page 132. Playback command: <journal_filename> should be surrounded by single quotes.

Appendix F

» Page 160.5: Added line to file:
cubit.graphics.geometry: 500x500+0+0

212 CUBIT Version 1.11.0 Reference Manual Document Version 4/18/96

	CUBIT Mesh Generation Environment Volume 1: Users ...
	Cubit Development Team Membership
	Table of Contents
	List of Figures
	List of Tables

	Chapter 1: Getting Started
	How to Use This Manual
	CUBIT Mailing List
	Problem Reports and Enhancement Requests
	Executing CUBIT
	Execution Command Syntax
	Initialization File
	User Environment Settings
	Graphics Customization

	Command Syntax
	Features
	Geometry Creation
	Algebraic Command Preprocessing
	Geometry Consolidation
	Geometry Decomposition
	Supported Element Types
	Mesh Creation
	Boundary Condition Application
	Graphical Display Capabilities
	Hardware Platforms

	Future Releases

	Chapter 2: Tutorial
	The Tutorial
	Command: This is a Command Line

	Step 1: Beginning Execution
	Step 2: Creating the Brick
	Command: Create Brick Width 10. Depth 10. Height 1...
	Command: Brick Width 10. Depth 10. Height 10.
	Command: Reset
	Command: Br Wi 10. Dep 10. Hei 10.
	Command: brick width 10

	Step 3: Creating the Cylinder
	Command: create cylinder height 12 radius 3
	Command: cylinder height 12 radius 3

	Step 4: Adjusting the Graphics Display
	Command: from 3 4 5

	Step 5: Forming the Hole
	Command: Subtract 2 From 1

	Step 6: Setting Body Interval Size
	Command: body 3 interval size 1.0

	Step 7: Setting Specific Surface Intervals
	Command: label surface on
	Command: display
	Command: surface 10 interval 10

	Step 8: Setting Specific Curve Intervals
	Command: label surface off
	Command: label curve on
	Command: display
	Command: curve 15 to 16 interval 20

	Step 9: Surface Meshing
	Command: surface 11 scheme pave
	Command: mesh surface 11

	Step 10: Volume Meshing
	Command: volume 3 scheme translate source 11 targe...
	Command: mesh volume 3
	Command: graphics mode hidenline
	Command: display
	Command: graphics mode smoothshade
	Command: display

	Congratulations!

	Chapter 3: Environment
	Interface Choices
	Overview
	Command Line Version
	Batch Interface

	Session Control
	General Execution Commands

	Journal Files
	CUBIT Journal File Generation
	Replaying Journal Files

	Graphics
	Graphics Window Control
	Image Rendering Control
	Viewing the Model
	Displaying Entities
	Drawing Entities
	Highlighting Entities
	Setting Visibility
	• Global Settings
	• Individual Geometric Entity Settings

	Color
	Entity Labeling
	Hardcopy Output
	Video Animations

	Model Information
	Model Summary Information
	Geometry Information
	Mesh Information
	Special Entity Information
	Other Information
	Message Output Settings
	Graphical Display Information
	Memory Usage Information

	Picking
	Help Facility

	Chapter 4: Geometry
	Geometry Definition
	Geometric Topology
	Vertex
	Curve
	Surface
	Volume
	Body
	Group

	Cellular Topology

	Geometry Creation
	Geometry Primitives
	Brick
	Cylinder
	Prism
	Frustum
	Pyramid
	Sphere
	Torus

	Sketchpad Geometry
	Sketch Overview
	Polygonal Outline
	Outline Refinement

	Importing Geometry
	Importing ACIS Files
	ACIS Test Harness
	PRO/Engineer
	FASTQ

	Geometry Manipulation
	Transform Operations
	Copy
	Move
	Scale
	Rotate
	Reflect
	Restore

	Boolean Operations
	Intersect
	Subtract
	Unite

	Geometry Decomposition
	Web Cutting
	Body-Based Decomposition

	Geometry Consolidation
	General Geometry Consolidation
	Selective Geometry Consolidation

	Geometry Attributes
	Entity Names

	Chapter 5: Mesh Generation
	Mesh Definition
	Mesh Hierarchy
	Node
	Edge
	Face
	Brick

	Mesh Generation

	Mesh Attributes
	Meshing Schemes
	Interval Specification
	Element Types

	Surface Vertex Types
	Automated Interval Assignment
	Scheme Map Interval Assignment Constraints
	Scheme Submap Interval Assignment Constraints

	Curve Meshing
	Node Density
	Relative Element Edge Lengths
	Sizing Function-Based Node Placement
	Meshing the Curve

	Surface Meshing
	Scheme Designation
	Mapping
	Paving
	Submapping
	Meshing Primitives
	• Triangle Primitive

	Adaptive Surface Meshing
	Boundary Layer Tool
	Meshing the Surface

	Volume Meshing
	Scheme Designation
	Mapping
	Sweeping (Project, Translate, and Rotate)
	• Project
	• Translate
	• Rotate

	Plastering
	Whisker Weaving

	Meshing the Volume

	Mesh Duplication
	Mesh Editing
	Smoothing
	Surface
	Volume
	Accessing Smooth Functions in the GUI

	Node Repositioning
	Mesh Deletion
	Face Deletion
	Import Mesh

	Mesh Quality
	Background
	Command Syntax
	Command Examples
	Example Output
	Quality Surface 1
	Quality Surface 1 Draw ‘Skew’

	Limitations and Planned Enhancements:

	Chapter 6: Finite Element Model Definition and Out...
	Finite Element Model Definition
	Element Blocks
	Nodesets
	Sidesets

	Element Block Specification
	Default Element Types, Block IDs, and Attributes
	Element Block Definition Examples
	Multiple Element Blocks
	Surface Mesh Only
	Two-Dimensional Mesh

	Boundary Conditions—Nodesets and Sidesets
	Nodeset Associativity Data

	Setting the Title
	Exporting the Finite Element Model

	Appendix A: Command Index
	Command Syntax
	Commands
	At
	Block Attribute
	Block Element Type
	Block Geometry Type
	Block Label
	Block Visibility
	Body Copy
	Body Geometry Visibility
	Body Interval
	Body Label
	Body Mesh Visibility
	Body Move
	Body Reflect
	Body Restore
	Body Rotate
	Body Scale
	Body Size
	Body Visibility
	BoundaryLayer
	BoundaryLayer Surface
	Brick
	Check
	Color Background
	Color Block
	Color Body
	Color Body Geometry
	Color Body Mesh
	Color Group
	Color Group Geometry
	Color Node
	Color NodeSet
	Color SideSet
	Color Surface
	Color Surface Geometry
	Color Surface Mesh
	Color Volume
	Color Volume Geometry
	Color Volume Mesh
	Color Sheet
	Comment
	Copy Mesh
	Create Brick
	Create Cylinder
	Create Frustum
	Create Prism
	Create Pyramid
	Create Sphere
	Create Torus
	Curve Interval
	Cur ve Label
	Curve Reverse Bias
	Curve Scheme Curvature
	Curve Scheme Bias
	Curve Scheme Equal
	Curve Size
	Cylinder
	Decompose
	Delete Body
	Delete Face
	Delete Mesh
	Display
	Draw Block
	Draw Body
	Draw Curve
	Draw Edge
	Draw Face
	Draw Group
	Draw Hex
	Draw Loop
	Draw Node
	Draw NodeSet
	Draw SideSet
	Draw Surface
	Draw Vertex
	Draw Volume
	Echo
	Exit
	Export
	From
	Frustum
	Geometry Visibility
	Graphics Autocenter
	Graphics Autoclear
	Graphics Axis
	Graphics Border
	Graphics Center
	Graphics Clear
	Graphics LineWidth
	Graphics Mode
	Graphics Pan
	Graphics Perspective
	Graphics Perspective Angle
	Graphics Text Size
	Graphics Window
	Graphics WindowSize
	Graphics Zoom
	Group
	Group Interval
	Group Geometry Visibility
	Group Mesh Visibility
	Group Label
	Group Size
	Hardcopy
	Help
	Hyperhelp
	Import Acis
	Import Fastq
	Import Mesh
	Import Sizing Function
	Intersect
	Journal
	Label
	List (Geometry/Mesh Related)
	List (Other)
	Merge
	Mesh Body
	Mesh Curve
	Mesh Group
	Mesh Surface
	Mesh Visibility
	Mesh Volume
	Name
	Node Move
	Node Visibility
	NodeSet Associativity
	NodeSet Curve
	NodeSet Label
	NodeSet Move
	NodeSet Surface
	NodeSet Vertex
	NodeSet Visibility
	NodeSet Volume
	Pan
	Pause
	Pick
	Playback
	Plot
	Prism
	Pyramid
	Quality
	Quit
	Record
	Record Stop
	Reset
	Rotate
	Set
	Sheet Visibility
	SideSet Curve
	SideSet Label
	SideSet Surface
	SideSet Visibility
	Smooth Group
	Smooth Surface
	Smooth Volume
	Sphere
	Subtract
	Surface Angle
	Surface Geometry Visibility
	Surface Interval
	Surface Label
	Surface Mesh Visibility
	Surface Periodic Interval
	Surface Scheme Curvature
	Surface Scheme Map
	Surface Scheme Pave
	Surface Scheme Triangle
	Surface Scheme TriMap
	Surface Scheme TriPave
	Surface Size
	Surface Sizing Function
	Surface Smooth Scheme
	Surface Visibility
	Title
	Torus
	Unite
	Up
	Version
	Vertex
	Vertex Label
	Vertex Visibility
	Video
	Video Initialize
	Video Snap
	View At
	View From
	View List
	View Reset
	View Up
	Volume Geometry Visibility
	Volume Interval
	Volume Label
	Volume Mesh Visibility
	Volume Scheme Curvature
	Volume Scheme Map
	Volume Scheme Plaster
	Volume Scheme Project
	Volume Scheme Rotate
	Volume Scheme Translate
	Volume Scheme Weave
	Volume Size
	Volume Smooth Scheme
	Volume Visibility
	WebCut Body
	Weight Hexes
	Zoom

	Appendix B: Examples
	General Comments
	Simple Internal Geometry Generation
	Octant of Sphere
	Airfoil
	The Box Beam
	Thunderbird 3D Shell
	Assembly Components

	Appendix C: Fsqacs: A FASTQ to ACIS Command Interp...
	Description
	Program Execution
	Limitations

	Appendix D: CUBIT Installation
	Licensing
	Distribution Contents
	Installation
	HyperHelp Installation
	System Requirements
	• CPU
	• Disk Space
	• Printer
	• Operating System
	• Windowing Environment

	Copying HyperHelp Files
	Setting Up the HyperHelp Environment

	Appendix E: Available Colors
	Appendix F: CUBIT Application Defaults File
	Appendix G: HyperHelp Viewer
	Starting the Viewer
	Using Menus and Buttons
	Using HyperHelp Menus
	Using HyperHelp Buttons
	Using the Keyboard with HyperHelp
	Menus
	Buttons
	Scrolling Help Window

	Searching for Specific Information
	To Access Help Topics from the Contents List
	To Search for a Keyword
	To Find Any Text

	Navigating Through Help
	To Display a Pop-up Definition
	To Jump to a New Topic
	To Browse Through a Series of Topics
	To Define a Bookmark
	To Go To a Bookmark Topic
	To Delete a Bookmark

	Making Notes on Topics
	To Create an Annotation
	To View an Annotation
	To Delete an Annotation

	Printing Help Topics
	To Print the Current Help Topic
	To Print All Help Topics
	To Print Selected Help Topics
	To Configure a Printer
	References
	Glossary
	B
	C
	E
	F
	G
	H
	N
	P
	S
	V
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Appendix H: ERRATA — May 26,1994
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 5
	Appendix A (Command Index)
	Graphics Zoom Screen
	Journal

	Appendix F

